
NASA TECHNICAL 
MEMORANDUM 

r 

r, 

CFSTI PRICE(S) $ 

Hard czpy (HC) 

Microfiche (MF) 

# no 3 ,  - 
4' I 

i 
i 

ff 653 July 65 

PROGRESS REPORT NO. 8 
PROCEEDINGS OF THE TWENTY-FOURTH SEMINAR ON 
SPACE FLIGHT AND GU IDANCE THEORY 
Sponsored by the Aero-Astrodrynamics Laboratory 

NASA 

George 

NASA 'I'M X-53478 

June 23, 1966 

a 
0 I 
> lPAGi?Sl Pi(, 3 B  E 
4 
L ICATEGORYI 

mX- 5341% 
(NASA CR OR TUX OR A D  NUMBER) 

C. Mdrshdll 
Space Flight Ceager, 
Hmtsville, Aldbdma 

I 
1 

. I  

. 



TECHNICAL MEMORANDUM X-53478 

PROGRESS REPORT NO. 8 

ON 
SPACE FLIGHT AND GUIDANCE THEORY 

PROCEEDINGS OF THE TWENTY-FOURTH SEMINAR 

Sponsored by t h e  Aero-Astrodynamics Laboratory 

George C .  Marshall Space F l i g h t  Center 
Huntsv i l le ,  Alabama 

ABSTRACT 

Progress  r e p o r t s  of NASA sponsored s t u d i e s  i n  space f l i g h t  and 
guidance theory  are presented .  
u n i v e r s i t i e s  and i n d u s t r i a l  f i rms  under c o n t r a c t  t o  MSFC. This  progress  
r e p o r t  r e f l e c t s  work done on t h e  con t r ac t s  dur ing  t h e  pe r iod  from Apr i l  1, 
1965 t o  December 31, 1965. The con t r ac t s  a r e  t e c h n i c a l l y  monitored by 
personnel  of t he  Astrodynamics and Guidance Theory Div is ion ,  Aero- 
Astrodynamics Laboratory,  George C .  Marsha l l  Space F l i g h t  Center .  

The s t u d i e s  are made by s e v e r a l  

NASA-GEORGE C.  MARSHALL SPACE FTLIGHT CENTER 



. 

i v  

I . 

? 

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER 

TECHNICAL MEMORANDUM X-534-78 

June 23, 1966 

PROGRESS REPORT NO. 8 

Proceedings of t h e  Twenty-Fourth Seminar 
on 

Space F l i g h t  and Guidance Theory 

Sponsored by t h e  Aero-Astrodynamics Laboratory 
George C.  Marshall Space Flight Center 

ASTRODYNAMICS AND GUIDANCE THEORY DIVISION 
AERO-ASTRODYNAMICS LABORATORY 
RESEARCH AND DEVELOPMENT OPERATIONS 



8 

TABLE OF CONTENTS 

Page 

Y 

. 

1. FINITE TIME STABILITY OF PERIODIC SOLUTIONS OF 
HAMILTONIAN SYSTEMS b y  I. S. B e r n s t e i n ,  General 
P r e c i s i o n  Aerospace  .............................. 7 ./- 

2 .  DISCONTINUOUS VECTOR FIELDS AND FEEDBACK CONTROL 
b y  H. H e r m e s ,  Brown U n i v e r s i t y  ................... 2 5 /  

3.  ESTIMATION OF THE DOMAIN O F  ATTRACTION b y  
Gunther R. Geiss, Grumman Aircraft  E n g i n e e r i n g  
Corporation 43 ...................................... . /+ 

4. A TRANSFORMATION TECHNIQUE TO OBTAIN CONTROL 
ANGLE SOLUTIONS I N  CALCULUS O F  VARIATIONS PROBLEMS 
b y  R o b e r t  W. Hunt, S o u t h e r n  I l l i n o i s  U n i v e r s i t y  .. 77 /- 

5. STABILITY CRITERIA FOR N t h  ORDER, HOMOGENEOUS 
LINEAR DIFFERENTIAL EQUATIONS by E. F. Infan te ,  
Brown Unive r s i ty  ................................. 91 >- 

6 .  AN INVARIANCE PRINCIPLE I N  THE THEORY OF STABILITY 
b y  J. P. L a S a l l e ,  Brown Univers i ty  ............... 11 1 7--- 

7. ANALYTICAL SOLUTION O F  EULER-LAGRANGE EQUATIONS 
FOR OPTIMUM COAST TRAJECTORIES by Chiu H. N g  and 
P e t e r  J.  Palmadesso,  The Boe ing  Company . . * .  - .  , * ,  131/ 

APPROVAL PAGE ........................................ 141 

DISTRIBUTION ......................................... 142 

iii 



TECHNICAL MEMORANDUM X-53478 

. PROGRESS REPORT NO. 8 
Proceedings of t h e  Twenty-Fourth Seminar 

on 
Space F l i g h t  and Guidance Theory 

SUMMARY 

Progress r e p o r t s  of NASA sponsored s t u d i e s  i n  space 
f l i g h t  and guidance theory  a re  presented .  The s t u d i e s  are 
made by s e v e r a l  u n i v e r s i t i e s  and i n d u s t r i a l  f i r m s  under 
c o n t r a c t  t o  MSFC. This progress  r e p o r t  r e f l e c t s  work done 
on t h e  c o n t r a c t s  during t h e  per iod  from Apri l  1, 1965 t o  
December 31, 1965. The con t r ac t s  a r e  t e c h n i c a l l y  monitored 
by personnel  of t h e  Astrodynamics and Guidance Theory Div is ion ,  
Aero-Astrodynamics Laboratory, George C .  Marshall Space F l i g h t  
Center.  

INTRODUCTION 

. 

I '  

This progress  r e p o r t  contains  e i g h t  papers whose s u b j e c t  
ma t t e r  l i e s  wi th in  t h e  areas o f  space f l i g h t  and guidance 
theory .  
a t  u n i v e r s i t i e s  and i n d u s t r i a l  f i rms  under con t r ac t  t o  MSFC. 

The papers  have been w r i t t e n  by i n v e s t i g a t o r s  employed 

T h i s  r e p o r t  is  t h e  e ighth  of  t h e  "Progress Reports" and 

The c o n t r i b u t i n g  agencies and t h e i r  f i e l d s  o f  ma jo r  

covers  t h e  pe r iod  from A p r i l  1, 1965 t o  December 31, 1965. 

i n t e r e s t  a r e  : 

Brown Unive r s i ty  
General P rec i s ion  Aerospace 
Grumman A i r c r a f t  

Southern I l l i n o i s  Un ive r s i ty  
The Boeing Company t Auburn Un ive r s i ty  

S t a b i l i t y  of Dynamical Systems i 
T r a j e c t o r y  Optimization 

Control  Theory { Brown Unive r s i ty  



The ob jec t ive  o f  t h i s  i n t r o d u c t i o n  i s  to review b r i e f l y  

The f i r s t  paper i s  concerned w i t h  f i n i t e  t i m e  s t a b i l i t y  

t h e  con t r ibu t ions  of each agency. 

p r o p e r t i e s  of p e r i o d i c  s o l u t i o n s  of Hamiltonian systems. 
The con t r ac t  f o r  which i t  i s  a r e p o r t  of progress  has for. 
i t s  p r i n c i p a l  o b j e c t i v e  t h e  de te rmina t ion  of t ha t  s e t  of 
i n i t i a l  o r  i n j e c t i o n  condi t ions  i n  which i s  inc luded  t h e  
i n i t i a l  condi t ions f o r  a given (a lmost )  p e r i o d i c  s o l u t i o n  
t h a t  w i l l  r e s u l t  i n  ( a l m o s t )  pe r iod ic  s o l u t i o n s  tha t  l i e  
w i th in  a prescr ibed  " tube" of t h e  given s o l u t i o n .  
i c a l  basis f o r  t h i s  de te rmina t ion  was given by Bi rkhoff .  
However, t o  o b t a i n  a c t u a l  numerical  e s t ima tes  from the ana ly t -  
i c a l  theory an enormous amount of a l g e b r a i c  manipulat ion i s  
r equ i r ed  even i n  t h e  s imples t  problems. For t h i s  reason, a 
d i g i t a l  computer and an appropr i a t e  non-numeric computer 
language t o  perform t h e  requi red  manipulations were employed. 

Birkhof? theory,  t h e  p l a n a r  r e s t r i c t e d  three-body problem 
was chosen as a s i m p l i f i e d  dynamical model; t h e  given 
s o l u t i o n  i n  t h i s  model i s  a Lagrangian c r i t i c a l  p o i n t .  

A t h e o r e t -  

AS an  i n i t i a l  a p p l i c a t i o n  of t h e  mechanization of the  

The second paper i s  concerned wi th  d iscont inuous  v e c t o r  
f i e l d s  which are encountered i n  problems of feedback con t ro l .  
It begins  wi th  t h e  observa t ion  t h a t  i f  X i s  a d iscont inuous  
v e c t o r  f i e l d  then  the s tudy  of s t a b i l i t y  under p e r t u r b a t i o n s  
c ( t )  i s  d i f f e r e n t  i f  t h e  p e r t u r b a t i o n  e n t e r s  the equat ion  of 
motion as a summand i n  the  argument of X, t ha t  i s ,  as i n  t h e  
e quat  i on 

i ( t )  = X ( x ( t )  + & ( t ) )  

f r o m  what i t  would be i f  the p e r t u r b a t i o n  were no t  a p a r t  
of t h e  argument, as i n  t h e  equat ion  

i ( t )  = X ( x ( t ) )  + € ( t ) .  

If X i s  continuous then  t h i s  i s  not  the case .  Problems i n  
feedback con t ro l  l e a d  to discont inuous  v e c t o r  f i e l d s  i n  t h e  
f orin 
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where p i s  a c o n t r o l  funct ion.  The a u t h o r  d i scusses  the 
d i s t i n c t i o n  between a c l a s s i c a l  s o l u t i o n  of t h e  equat ions 
of motion and a Fi l ippov so lu t ion ,  a g e n e r a l i z a t i o n  of t h e  
d e f i n i t i o n  o f  s o l u t i o n .  H e  then shows as h i s  main r e s u l t  
t ha t  if a v e c t o r  f i e l d  X is  s t a b l e  with r e s p e c t  t o  measure- 
ment, then every c l a s s i c a l  s o l u t i o n  i s  a F i l ippov  s o l u t i o n .  

The t h i r d  paper presents  a survey  of var ious  approaches 
t o  t h e  problem of e s t ima t ing  the domain of a t t r a c t i o n  of an 
equ i l ib r ium s o l u t i o n  of  a system of non l inea r  autonomous 
d i f f e r e n t i a l  equat ions .  Based on observa t ions  r e s u l t i n g  
from t h i s  survey, t h e  problem i s  reformulated as that  of 
choosing opt imal ly  t h e  Liapur\,ov f u m t i m  frm the space cf 
p o s i t i v e  d e f i n i t e  quadra t i c  forms. An es t ima te  of t h e  domain 
of a t t r a c t i o n  i s  then  obtained as the s o l u t i o n  of a minimi- 
z a t i o n  problem. T h i s  approach t o  t h e  problem has t h e  advan- 
t ages  o f  being s u i t a b l e  f o r  machine computation, of  y i e l d i n g  
e s t ima tes  that  are e a s i l y  v i s u a l i z e d  and of being r e l a t i v e l y  
i n s e n s i t i v e  t o  system dimension. Some pre l iminary  numerical 
r e s u l t s  are presented  for t he  Duffing equat ion  w i t h  damping. 

The f o u r t h  paper deals with the problem of obta in ing  a 
t ransformat ion  technique which can be used t o  e l imina te  the  
c o n t r o l  angles  f rom the Euler-Lagrange equat ions  t o  g ive  a 
system of d i f f e r e n t i a l  equations i n  the s ta te  variables and 
the Lagrange m u l t i p l i e r s  only. The problem arises i n  the 
s tudy  of t r a j e c t o r y  opt imiza t ion  by c l a s s i c a l  ca l cu lus  of 
v a r i a t i o n s  techniques.  I n  applying t h e s e  techniques,  c e r t a i n  
Euler-Lagrange equat ions  involving the c o n t r o l  angles  are 
encountered. I n  some cases  these equat ions  lead t o  a s o l u t i o n  
for t h e  angles  i n  terms of the Lagrange mul t ip l i e r s , and  these 
s o l u t i o n s  can be used t o  e l imina te  the  c o n t r o l  angles  from the 
Euler-Lagrange equat ions  r e s u l t i n g  i n  a system o f  d i f f e r e n t i a l  
equat ions  i n  g e n e r a l l y  d e s i r a b l e  s ta te  v a r i a b l e s  and Lagrange 
m u l t i p l i e r s  only.  The process, however, can be c a r r i e d  out 
more r e a d i l y  i n  some coordinate systems than  i n  o the r s .  I n  
t h i s  paper the technique for a gene ra l  t ransformat ion  of the 
s ta te  v a r i a b l e s  and t h e i r  corresponding Lagrange m u l t i p l i e r s  
from one coord ina te  system t o  ano the r  i s  d iscussed .  The 
technique i s  then  appl ied  t o  a s p e c i f i c  problem involving 
three-dimensional  t r a j e c t o r y  opt imiza t ion .  

( t ) i  + p n ( t ) x  = 0 
+ Pn-1 x ( n )  + p 1  (t) bl) t ... 
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which depend on the behavior  of the  real  continuous func t ions  
p i ( t ) ,  b u t  no t  upon t h e i r  d e r i v a t i v e s .  

f o r  t h i s  problem. The p a r t i c u l a r l y  a t t r a c t i v e  a spec t  of 
t h e s e  c r i t e r i a  is  tha t  they  depend only on n cons t an t s  which 
l o c a t e  a family of h y p e r e l l i p s o i d s  i n  the  n-dimensional space 
of t h e  p i ( t ) .  If t h e  curve represented  p a r a m e t r i c a l l y  by the 
p i ( t )  i s  e n t i r e l y  contained wi th in  one of the  hype re l l i p so ids ,  
t hen  the  z e r o  s o l u t i o n  of t h e  equat ion  above i s  asymptot ica l ly  
s t ab le .  

Recently, G h i z z e t t i  obtained simple s t a b i l i t y  c r i t e r i a  

I n  t h i s  paper t h e  au tho r  uses  the second method of 
Liapunov to ob ta in  s t a b i l i t y  c r i t e r i a  f o r  t h e  above equat ion  
which depend on only n parameters which determine a fami ly  
of e l l i p t i c  paraboloids  i n  the n-dimensional space of the  
p i ( t ) .  It can be shown that these e l l i p t i c  parabolo ids  
completely conta in  the  h y p e r e l l i p s o i d s  of  G h i z z e t t i .  A 
p r a c t i c a l  technique f o r  the  a p p l i c a t i o n  of the  s t a b i l i t y  
c r i t e r i a  obtained i s  d iscussed  and i s  app l i ed  to two examples. 

The o b j e c t i v e  of t h e  s i x t h  paper i s  to presen t  a u n i f i e d  
expos i t i on  of Liapunov's t heo ry  of s t a b i l i t y  t h a t  i nc ludes  
t h e  c l a s s i c a l  Liapunov theorems on s t a b i l i t y  and i n s t a b i l i t y  
as simple c o r o l l a r i e s .  The p r i n c i p a l  idea e x p l o i t e d  i n  t h i s  
paper  was used by o t h e r  i n v e s t i g a t o r s  i n  the  s tudy  of nonauton- 
omous func t iona l  d i f f e r e n t i a l  equat ions .  O f  cons iderable  
importance is  t h e  p o s s i b i l i t y  of extending these concepts t o  
more genera l  c l a s s e s  of dynamical systems, e s p e c i a l l y  to some 
types  as def ined by pa r t i a l  d i f f e r e n t i a l  equat ions .  

A noteworthy c o n t r i b u t i o n  i s  Theorem 1 and i t s  c o r o l l a r y .  
The theorem, which i s  concerned wi th  t he  nonautonomous system 
? = f ( t , x ) ,  exp la ins  p r e c i s e l y  the  na tu re  of t h e  informat ion  
given by a Liapunov func t ion ;  i t  shows t h a t  a Liapunov func- 
t i o n  r e l a t i v e  to a s e t  G d e f i n e s  a s e t  E which, under the 
condi t ions  of the  theorem, l o c a t e s  a l l  p o s i t i v e  l i m i t  sets 
of s o l u t i o n s  x ( t )  of k = f ( t , x )  t ha t  for p o s i t i v e  t i m e  remain 
i n  G.  However, i n  o rde r  to use the theorem, t h e r e  must be 
some means of determining which s o l u t i o n s  remain i n  G.  A 
co ro l l a ry ,  a consequence of the theorem, g ives  one way of 
doing t h i s  and a l s o  provides ,  for nonautonomous systems, a 
method f o r  e s t ima t ing  reg ions  of a t t r a c t i o n  (domains of 
s t a b i l i t y ) .  

a s o l u t i o n  x ( t )  of a system of d i f f e r e n t i a l  equat ions  as 
t-a. The p o i n t s  peR are l i m i t  p o i n t s .  A l i m i t  s e t  has an 

A l i m i t  s e t  of R i s  de f ined  as the  set  approached by 
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" invar iance  proper ty"  i f  a l l  s o l u t i o n s  x ( t )  which s t a r t  a t  
pel2 remain i n  hl as t-. It i s  po in ted  out t ha t  t h e r e  a r e  
s p e c i a l  c l a s s e s  of d i f f e r e n t i a l  equat ions  where the l i m i t  
s e t s  of s o l u t i o n s  have, a d d i t i o n a l l y ,  an invar iance  p rope r ty  
and tha t  t h i s  p rope r ty  permits a refinement and sharpening 
o f  Theorem 1, mentioned above, f o r  t h e s e  s p e c i a l  c l a s s e s .  

Because t h e  paper i s  l a r g e l y  a survey of r ecen t  ex tens ions  
of p a s t  i n v e s t i g a t i o n s ,  formal proofs ,  except for c o r o l l a r y  6, 
are no t  given; bu t  ample re ferences  and i l l u s t r a t i v e  examples 
are provided f o r  the r eade r  who might wish to work out  the 
proofs  f o r  h imsel f .  

Euler-Lagrange equat ions  for the  Lagrange m u l t i p l i e r s  f o r  
optimum coas t  t r a j e c t o r i e s  i s  obtained.  S i m i l a r  s o l u t i o n s  
have been obtained by o t h e r  i n v e s t i g a t o r s ,  but  a l l  of these 
s o l u t i o n s  had s i n g u l a r i t i e s  for o r b i t s  with zero  e c c e n t r i c i t y .  
The s o l u t i o n  presented i n  t h i s  paper does not  have such a 
s i n g u l a r i t y ,  bu t  there is  a numerical d i f f i c u l t y  due t o  a 
removable s i n g u l a r i t y  at  u n i t  e c c e n t r i c i t y .  
s o l u t i o n ,  accu ra t e  nea r  u n i t  e c c e n t r i c i t y ,  i s  given. This 
s o l u t i o n  reduces t o  the exact  pa rabo l i c  s o l u t i o n  f o r  u n i t  

I n  t h e  seventh  paper an a n a l y t i c a l  s o l u t i o n  of t h e  

An approximate 

e c c e n t r i c l t y .  

L 
V 
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Abstract 

This study deals with finite time stability properties of periodic solutions of 

Hamiltonian systems. It attempts to answer questions such as what tube of 

initial conditions about the periodic solution w i l l  keep solutions in some pre- 

scribed tube about the periodic solution over some prescribed time interval. 

A theoretical basis for answering questions such as the one formulated above 

was given by Birkhoff [ 1 1. However, to obtain actual numerical estimates 

from the analytical theory requires a great deal of algebraic manipulation 

even in the simplest of problems. For this reason, it was decided to employ 

a computer and an appropriate computer language to perform the required 

man ipu lat ions. 

As an init ial application of the mechanization of the Birkhoff theory the 

system chosen was the planar restricted three-body problem and the solution 

chosen was a Lagrangian critical point. 

Basic Theory 

Let H(x,y) be the Hamiltonian of a dynamical system so that the equations 

of motion can be written as 

x = (XI' ".,X ) n = H (x,y) 

v = lI...,nt (1) 
YV 

V 

and let x = cpv(t), yv = $I (t) be a periodic solution of (1) of period 2 n .  

To study solutions in the neighborhood of this periodic motion we make the change 

of variables 

V V 

- _  K = x-cp ,  y - y - # .  

8 



Then (1) takes the form 

V 

* 
where H has period 2W in t and 

z * 
H, (O,O,t) = HZ (O,O,t) = 0, v = l,...,n. 

YV V 

Thus the origin i s  a critical point solution of (2). The problem is  therefore 

reduced to the study of solutions in the neighborhood of an equilibrium 

solution of a Hamiltonian system with an explicit periodic time dependence. 

A theorem of Birkhoff, [ 1 ] , i s  appiicable to this problem. 

Theorem 1 

an equilibrium point at the origin, be analytic in  x and y, periodic in t 

of period 2n, and thus representable in  a convergent power series by 

Let the Hamiltonian H (x,y,t) of a dynamical system with 

. 

where H (x,y,t) i s  a homogeneous polynomial in x,y of degree k with 

periodic coefficients of period 2 ~ .  Let the 2n characteristic exponents, 

[ 2  1, associated with H2 be distinct and purely imaginary. As the system i s  

Hamiltonian, they may be represented 

k 

[ 3  1, 

9 



A l l . . . /  A n /  -A1/"* - A  . 
n 

Furthermore let the exponents satisfy 

m X + m  +...+ m X +mn+l#O 1 1 2 " 2  n n  
Assumption 1 

for a l l  integers m. such that 
I 

Then there exists a canonical change of variables 

where f and g are convergent power series without constant terms in 

the components of 5 and q with coefficients having period 2n in  t, 

such that the Hamiltonian in the new variables has the form 

V V 

- 
where H1 i s  a polynomial with constant coefficients of degree N if N 

i s  even and degree N-1 i f  N i s  odd in  the variables z = tV qvl and 

beginning with terms where E2 ( t l  q I t) i s  a power series in 6 
of degree N + 1. With in this form the Hamiltonian i s  said to be 

normalized up to order N. 

V 

V I  rlv8 

10 

. 



i 

4 

I 

Theorem 2 (Special Case) 

i 

I 

r 

Let the Hamiltonian, Hk,y), of  a dynamical system with an equilibrium 

point at the origin, be analytic in x and y and thus representable in a 

convergent power series by 

v v  V V v1 n n+l n+2 2n 90 

Yl+'"+V = 2  
2n 

where H (x,y) i s  a horncqeneous polynomial in x, y of degree n with 

constant coefficients. Let the 2n eigenvalues associated with H p  be 

distinct, purely imaginary and represented by 

n 

An, - A  ,,..., - A  . ~l,".' n 

Furthermore let the eigenvalues satisfy 

m X + m  X +...,+ rn X 0 1 1  2 2  n n  Assumption 1' 

for a l l  such integers m. such that 
I 

Then the conclusion of Theorem 1 holds. Moreover there i s  no explicit time 

dependence in the change of variables (3) and thus also in the new Hamiltonian 
Y 

H ( e ,  rl). 
11 



The usefulness of this theorem i s  the following. I f  we are studying solutions 

near the equilibrium point 5 = q = 0, then H 

H 

N 

i s  of higher order than 
& 2 

and i s  discarded for the moment. The equations then have the form 1 

5, = (2) = E ,  
-I! V 

v = 1,. ..,n 

If we multiply the first equation by q 

follows that 

the second by 6 
V I  V )  

and add, it 

d 
( tV \ )  = 0, v = 1, ... ,n. 

= c (constant) so that (4) becomes integrable yielding Thus, tv rl, V 

v = 1, ..., n. 

(4) 

If we restrict ourselves to a large finite time interval and a suitable region in 

phase space it can be shown that the higher order terms previously truncated can 

be made small so that (5) i s  a close representation to the actual solution in this 

region. By use of (3) approximate solutions to the original problem may be 

obtained. For precise statements along these lines see C 13 and [31. 

Rather than prove this general theorem we now illustrate how to carry out the norm- 

alization procedure for the particular Hamiltonian describing the planar restricted 

three-body problem and take for the periodic solution a Lagrange critical pctint. 

This problem falls under Theorem 2. 

I 12 
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Application 

The equations of motion for the planar restricted three-body problem in the 

rotating coordinate system are 

dx 2 m l Y  m2 
3- T f  
'1 '2 

9 + 2 0 -  = w y - 
dt dt 

where the gravitational corntant has been set equal to one. 

If we set 

dx =a-t - W Y  f 

then the Hamiltonian takes the form 

Ifweset Ix ,  -x21  = d and 

.. 

J3d b =T' d "'1 - "'2 
m + m  ' 1 2  

a 



then the point 

i s  an equilibrium point solution for the system. We introduce dimension- 

less variables T, q,, q2, pl, p2, in  the neighborhood of this equilibrium 

point by 

The Hamiltonian (3) i s  now defined in a neighborhood of the equilibrium 

point q - - q2 - - p1 = p2 = 0 and takes the form after expansion about this 

point 
1 

where 

(9) 
- 37 4+25k 3 123 2 2 15k 3 3  

H4 - mq1 T q l  9 2 -  z - 9 1  92 - 3- 9192 - m 9 2  

3 1 3  ( m l - m 2 ) *  
with k = '7 

ml +m2 

We now carry out the normalization of the Hamiltonian up to order 3 (N = 3) 

for the Earth-Moon system. For this value of k the eigenvalues corresponding 

to H2 are distinct and purely imaginary and Assumption 1 ' holds for N = 3 

14 

- I  
. I  



. 

From (7), H2 can be written as 

E =  

1/4 -k  0 
- k  -5/4 1 

0 1 1 

I) 0 I 
L 

The equations of motion then become 

i = (A)r + ... 
where 

F =  

- 
0 

0 

- 1  

0 
- 

As the eigenvalues c 

an A such that 

E' 

A - ~ F E A  = D 

- 

0 1 0 

0 0 1 

0 0 0 

- 1  0 0 
- 

- 1  

0 

0 1 I* 
. 

- 
1' x2 '  - X2' are distinct l.iere exists 1 '  



where 

D =  [ 0 

xq 
0 

0 

0 

0 

- %  
0 

L 

Moreover A can be chosen so that 

A ~ F A  = F 

which guarantees that 

r = AT (12) 

i s  a aanonlcal mapping and thus preserves the Hamiltonian nature of the system. 

As the equations of motion of the system in the new variables become 

. 
r = D f  + ... 

the Hamiltonian in the new variable becomes 

Omitting the details, the set of al l  matrices that diagonalize FE and are 

canonical take the form 

0 :I - xq 

A = A ,  AS, 

16 



where 

0 

62 

0 

0 

6, 
I "2 

- 1  
6. = X.a  (11-h.), i = 1, 2, 

I I 1  I 

> 
0 :I 1 

Al being chosen such that (10) i s  satisfied and A1 A so that both (10) and 

(1 1) are sat isf ied.  The matrix S has the form 

s =  
i" 0 
Lo 

0 

s2 

0 

0 

0 

0 

- 1  

0 s2 1 
where s 1 
we must guarantee that 

and s2 are free to vary. As r i s  real, from (12) it follows that 



where the bar represents the complex conjugate. It can be shown that i f  we choose 

s 1  and s2 by 

- i  - -  

then a sufficient condition for (13) to hold i s  that 

Combining the above matrices, the matrix A has the form 

The Hamiltonian under (12) takes the form . 

18 



CI c -  L. v% '3hV4 
= % 91 p 1 +  A2q2F2 + 2 gv1,v2,v3,v4 91 92 p1 p2 

Vl+...+V4 = 3  

- v. v.. v.. 

where (15) i s  obtained by substituting (12) into (7-9). This relatively simple 

symbolic operation, however, i s  quite cumbersome when attempted to be done by 

hand. It was done, though, for this particular model with the Earth-Moon con- 

stants and wi l l  be used for checking purposes. 

We now normalize the third order t e r n  of (15). As we shall see Assumption 1' 

for N = 3 i s  essential here. Let us introduce a canonical change of variables 

by the contact transformation, I: 3 I ,  

k = 1,2 

1- v2 v3 v4 
92 ')l ')2 

V 

v + v + v + v  = 3  1 2 3 4  

We attempt to choose cy so as to eliminate as many third-order 
1 8  v28 v3/ '4 

terms os possible in (15). Substituting (16,17) into (15) we obtain 



(19) c 

v 1  V I  v3 v4 
t1 E2 rj v2 + terms of degree 4 & higher. 

V i  t4V2rV3rV4 
+ 

v + v + v + v  = 3  1 2 3 4  

We note that V is  a function of the old variables K. By a formal process we 

can solve for these variables from (16) and substitute for the Gk in (19). Both 

the transformation from old to new variables and i t s  inverse may be obtained by 

a formal procedure from (16), (17). Both lead to powers series representations 

which converge in a neighborhood of the origin. Eliminating al l  dependence on 

qk 
A w 

i n  (19) by this method, H takes the form 

v, va "3 v, 5 5 77 rl + terms of degree 4 & higher. z gv,,v2,v3,v4 1 2 1 2 
v1+v2+v3+v4=3 

v 1  v2 v3 v4 
Collecting third order terms in e e2 Q, q2 in (20) and using (18) we 

obtain for a typical term 

I f  the bracket in (21) doesn't vanish we can solve for cy and 

eliminate the corresponding third order term from the Hamiltonian. But from 
1' 2' 3' 4 

20 
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Assumption 1' the bracket can vanish only if v1 =v3, v2 =v4. However 

this would imply the order we are dealing with i s  even. Thus for N = 3 

Assumption 1' guarantewall third order terms of the Hamiltonian can be 

eliminated by the change of variables (16,17). One must keep in  mind 

that although a l l  third order terms are eliminated many more fourth order 

terms arise from th is  process. These must be kept tract of for error bounds 

and also i f  higher order normalizations are to be carried out. This has been 

done by hand for the fourth-der terms of the Earth-Moon model and wi l l  be 

used for checking purposes. 

Following the same procedure os above, normalization of the Hamiltonian 

up to degree s can be carried out i f  Assumption 1 ' holds for N = s. Let us 

assume that the normalization has been carried out up to degree s - 1. 
Then the change of variables defined implicitly by (16 - 18) with 

v + v + v  + v 

before, collecting sth order terms in t1 e2 ('3v2v4 leads to an 

= s preserves the normal form up to degree s - 1. As 
v1 v2 1 2 3 4  

C can be chosen to eliminate the corresponding sth order term 
v v v v  11 2r 3r 4 _ -  

from the new Hamiltonian. Reosoning as above, a l l  sth order terms can be 

eliminated i f  s i s  odd. If s i s  even then al l  terms save those for which 

v1 - v3, v2 = 
C 

from products tk qk and lead to an integrable Hamiltonian. it should be noted 

that the complexity of the operation of normalization increases with s. This 

manifests itself in  keeping tract of all coefficients that combine to form a partic- 

- can be eliminated. We choose the corresponding v4' 
equal to zero in  this case. However these terms are formed 

v28 v38 v4 

ular g in  (21) which in turn i s  a funciion or u:: ~ C V ~ G S  

"1' v28 v3# '4 
normalizations. 

21 



Returning to our original task, after third-order terms have been eliminated, 

the Hamiltonian takes the form 

+ higher order terms. 
v1 v2 v3 v4 

v v v v  51 52 q l  72 1' 2' 3' 4 
v + v + v + v  = 4  1 2 3 4  

Dropping the 4th and higher order terms the differential equations become 

L 

It can be shown that i f  the init ial conditions are chosen such that qk(0) = ik(0) 

then solutions in the original variables wi l l  turn out to be real. Thus, i f  we 

invert a l l  transformations, information about the original system may be obtained. 

The error in this case cames in because of the truncation of the 4th and higher 

order terms. It i s  intuitively obvious that this procedure w i l l  give better results 

than a linear analysis. For in  such a linear analysis the error comes in by 

truncating cubic and higher terms in the Hamiltonian. 

A computer program i s  being written to perform the algebraic manipulations 

described above. This program i s  utilizing the I.B.M. FORMAC language and 

i s  being written for the I.B.M. 7090/94 computer. 

22 
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DISCONTINUOUS VECTOR FIELDS AND FEEDBACK CONTROL 

M. Hermes 

In t roduct ion .  The s tudy of  “ s t ab i l i t y”  under per turba t ions ,  &(t) ,  f o r  a C1 

vec tor  f i e l d  X i s  no d i f f e r e n t  when t h e  pe r tu rba t ion  e n t e r s  t h e  equat ion as 

;(t) = X(x(t)  + &(t))  , (;(t) = -) d x ( t )  o r  9s k ( t )  = X(x( t ) )+  &(t)  . T h i s  i s  d t  

no longer  t rue  i f  X i s  discont inuous.  I n  p a r t i c u l a r ,  problems of feedback 

c o n t r o l  n a t u r a l l y  lead t o  d i s c m t i n u o u s  vec tor  f i e l d s  of t h e  form 

where u i s  a c o n t r o l  funct ion.  I n  p rac t i ce ,  t h e  value o f  u i s  determined 

af t .er  making a measurement on t h e  s ta te  x ( t ) ,  a t  t ime t. If  t h i s  measure- 

ment i s  i n  e r ro r ,  say x ( t )  + &(t)  i s  measured r a t h e r  than  x ( t ) ,  t h e  governing 

equat ion of  motion w i l l  have t h e  form 

X(x) = F(x,u(x))  

;c(t) = X(x(t)  + e ( t ) ) .  (1) 

It i s  t h i s  concept which leads ,  i n  s ec t ion  2, t o  t h e  d e f i n i t i o n  of s t a b i l i t y  

w i t h  r e spec t  t o  measurement, I n t u i t i v e l y ,  X i s  s t a b l e  w i t h  r e spec t  t o  measure- 

ment i f  any so lu t ions  o f  e q . ( l )  and ?(t) = X(x( t ) ) ,  s a t i s f y i n g  t h e  same i n i t i a l  

condi t ions ,  remain a r b i t r a r i l y  c lose  over any f i n i t e  p o s i t i v e  t i m e  i n t e r v a l  

whenever t h e  supremum of 

s u f f i c i e n t l y  s m a l l .  

l&(t)l over t h i s  t i m e  i n t e r v a l  i s  r e s t r i c t e d  t o  be 

I n  general ,  t h e  i n i t i a l  va lue  problem f o r  a d iscont inuous  vec tor  f i e l d  

X need not  have a so lu t ion .  I f ,  however, t h e r e  i s  an a b s o l u t e l y  continuous 

func t ion  Cp of  t h e  rea l  v a r i a b l e  t which s a t i s f i e s  t h e  i n i t i a l  cond i t ion  and 

+( t )  = X(T(t))  almost everywhere; w e  w i l l  dall ~p a c l a s s i c a l  so lu t ion .  There 

are many ways t o  gene ra l i ze  t h e  d i f i n i t i o n  o f  so lu t ion ,  so t h a t  s o l u t i o n s  w i l l  

e x i s t ,  even i f  X i s  merely measurable. A summary of t h e  more s tandard not ions ,  

- 
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I .  

most of which rep lace  t h e  vector  f i e l d  X by an "averaged" o r  "smoothed" 

assoc ia ted  vec tor  f i e l d ,  are given by Fi l ippov i n  [ 3 ] .  I n  [ 3 ]  Fi l ippov d e f i n e s  

a new concept of a so lu t ion ,  which i s m o t i v a t e d  by c o n t r o l  problems; we  w i l l  

d i s c u s s  t h i s  not ion i n  01 and herenafter  r e f e r  t o  such s o l u t i o n s  as Fi l ippov 

so lu t ions .  

It w i l l  be  seen t h a t  cont ro l  l a w s  synthesized from "open loop'' c o n t r o l s  

(hence c l a s s i c a l  s o l u t i o n s  e x i s t )  may lead  t o  vector  f i e l d s  which are not  stable 

with r e s p e c t  t o  measurement. 

c o n t r o l  e x i s t s  when s o l u t i o n s  are taken i n  t h e  c l a s s i c a i  sense,  b u t  does riot 

e x i s t  i f  s o l u t i o n s  are taken i n  t h e  sense of Fil ippov. 

An example i s  given f o r  which an opt imal  feedback 

The main r e s u l t  shows t h a t  i f  a vector  f i e l d  X i s  s t a b l e  w i t h  

r e s p e c t  t o  measurement ( s o l u t i o n s  taken i n  t.he c l a s s i c a l  sense i n  t h e  d e f i n i t i o n  

of t h i s  s t a b i l i t y )  then  every c l a s s i c a l  so lu t ion  i s  a F i l ippov so lu t ion .  

If X i s  s t a b l e  with respect  t o  measurement, s o l u t i o n s  f o r  t 2 0 

of t h e  i n i t i a l  value problem f o r  the  corresponding d i S S e r e n t i a l  equat ion are 

unique, and such a s o l u t i o n  when evaluated a t  a f ixed p o s i t i v e  t i m e ,  v a r i e s  

cont inuously w i t h  t h e  i n i t i a l  d a t a .  ' in i s  means t h a t ,  with i f icreasing t ime, 

s o l u t i o n s  nay j o i n  b u t  not  branch. 

which a r e  meaningful from t h e  viewpoint of a p p l i c a t i o n s  should lead t o  vec tor  

f i e l d s  which are s t a b l e  with respect  t o  measurement. To c h a r a c t e r i z e  such 

v e c t o r  f i e l d s  d i r e c t l y ,  however, i s  no easy task. 

Thus it 5-s f e l t  t h a t  feedback c o n t r o l s  

r: i A D-..-.-.- fnr n; ~, -nnt in l ln11q F i e l d s :  t h e  FiliDDOV Solution. 
JI. .A L . \ . - l . , - -  --- 

Consider a c o n t r o l  system of t h e  form 

fc = g(x, u(x ) )  , x = (x 1 ,..., x,), u = ( u  1 ,...,U r ) ( 2 )  



w i t h  va lues  u(x) t o  be chosen from a ccmtrol set  U. Let t h e  t e rmina l  manifold 

( t a r g e t )  be  a manifold S contained i n  [0, m) x En , ( E  denotes  Euclidean 

n space.) If g i s  bounded and Lipschi tz ian  i n  both arguments and u i s  a 

given Lipschi tz ian  con t ro l ,  then  an i n i t i a l  value problem f c r  (2) with data 

x(0) = x has  a unique so lu t ion ,  with value a t  t ime t denoted cp(t,O,x ). 

Suppose ( P ( t l ,  0, xo) E S. 

S has  dimension l e s s  than n i n  

some neighborhood f l ( x o ) C  En o f  x , t h e r e  e x i s t s  a value t ( x ) ,  0 5 t ( x )  < O0, 

such t h a t  

n 

0 0 

The ques t ion  considered i s  t h e  following: - If 
En+ 1 , i s  it poss ib l e  t h a t ,  f o r  each x in - -- - -- - -- 

0 - ---- 
cp(t(x), 0, X ) E  S? -- 

From a c o n t r o l  system viewpoint, it would be  d e s i r a b l e  t h a t  t h i s  ques t ion  

have an a f f i rma t ive  answer (which i s  t h e  case i f  

However f o r  u Lipschi tz ian  we w i l l  show, using a method r e l a t e d  t o  a r e s u l t  

o f  Bridgland [l, lemma 23, t h a t  t h e  answer i s  negat ive.  Indeed, for f ixed t ' ,  

c p ( t ' ,  0, 0 )  i s  a homeomorphism t h e r e f o r e  t h e  image of  an n neighborhood w i l l  

have dimension no To consider  t h e  case  where t h e  value o f  t may depend on 

t h e  poin t  x E . f l(xo) de f ine  t h e  map JI : + E  by JI(t,x) = ( t , T ( t , o , X > ) o  

u i s  allowed d i s c o n t i n u i t i e s ) .  

En+l n + l  

Then JI i s  a homeomorphism with inve r se  JI-'(t,x) = (t,cp(O,t,x)). Since s 

has dimension less  than  n, JI - ' (S)  has  dimension less  than  n. Let P be a 

p ro jec t ion  defined by P( t ,x )  = (0,x).  Then P(JI-'(S)) has  dimension less 

than  no But P(JI-l(S)) i s  p r e c i s e l y  t h e  s e t  of i n i t i a l  p o i n t s  i n  E? from 

which S i s  a t t a inab le .  Indeed X ' E  P(JI-l(S)) i f  and only  i f  t h e r e  e x i s t s  

t " L  0 such t h a t  ( t ' ,  q ( t ' ,  0, x ' ) ) E  S. To see t h i s ,  X ' E  P (q - l (S ) )  =) f o r  

some 1 t ' ,  ( t ' ,  X ' ) E  JI- (S )=)$ ( t ' ,  X ' ) E  S or  ( t ' ,  cp(t', 0, x ' ) ) E  S. On t h e  

o the r  hand ( t ' ,  q ( t l ,  0, x ' ) ) E  S = ) ( t t ,  x') = (t', cp(o, t ' , q ( t ' ,O ,x ' ) )E  JI-'(S) 

and x ' E  P($-'(S)). Thus t h e  set of i n i t i a l  p o i n t s  from which S can be 

a t t a i n e d  has  dimension less  than  n. 
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It i s  usefu l ,  t he re fo re ,  from a c o n t r o l  viewpoint, t o  s tudy  d i f f e r e n t i a l  

equat ions with discont inuous r i g h t  s i d e s .  For t h e  sake of completeness we w i l l  

h r i e f i y  d i scuss  t h e  general ized cGncept o f  so la t iof i s  for such equat ions as given 

Fy Fi l ippov [ 3 ] .  

Let X be a measurable funct ion def ined almost everywhere i n  a domain 

6. C En with va lues  i n  a bounded set in  Ene With X(x) a s s o c i a t e  t h e  convex 

s e t  

- 
K(X(X), = n n c o  {X(U(x,6) - N)]  ( 3 )  

6 > 0 l ( N ) = O  

- 
where co denotes  closed convex hu l l ,  U(x, 6) i s  a closed 6 neighborhood 

L J ~  x, N an a r b i t r a r y  s e t  i n  En and p i s  n dimensional Lebesgue measure. 

An abso lu te ly  contiliuods vector  velued f m c t i o n  'p, defined on [0, T?, -- - - 

i s  c a l l e d  a so lu t ion  ir, t he  sense o f  Fi l ippov o f  

t, @ ( t ) E  K ( X ( c p ( t ) ) } .  

2 = X(x) i f  f o r  almost a l l  --- ---- - ---- 
It i s  shown i n  [ 3 ]  t h a t  such so lu t ions  w i l l  always exist, 

and many of t h e i r  p r o p e r t i e s  a r e  discusse-3. I n  p a r t i c u l a r ,  i f  X i s  continuous,  

K i X ( X > )  = x(x). 

To i l l u s t r a t e  t h i s  type  o f  s o l u t i  n 2nd i t s  consequences we c m s i d e r  

a very  simple c o n t r o l  problem. 

Example 1. The problem w i l l  be t h a t  of m i r i i m u m  t i m e  t r a n s f e r  with terminal  

manifold 1 S = ( ( t ,  xl, x2) : t 2 0, x = 0, x2 = 0 )  and system equat ions 

2l = u1 

with c o n t r o l  components subjec t  t o  t h e  c m s t r a i n t  0 6 lull + Iu21 S 1. 

c l e a r  t h a t  t h e  minimum t i m e  needed t o  a t t a i n  S from t h e  i n i t i a l  po in t  

It i s  

(xo 1' x;) 



0 0 
i s  

We s i n g l e  out two such s t r a t e g i e s ;  each w i l l  be  given i n  closed loop (feedback) 

form as symthesized from obvious open loop  s t r a t e g i e s .  

I xl( + 1 x2\ , and t h e r e  are many ways i n  which t h i s  can be  accomplished. 

S t r a t e m  1 

P i c t o r i a l l y ,  t h e  r e s u l t i n g  vec tor  f i e l d  looks as follows: 

Figure 1. 

I 
1 X 

c 

All vec to r s  a r e  
u n i t  vec tors .  

S t r a t egy  2 

(0 ,  -1) , x2 > 0 

(-1, 0 )  9 x2 = 0, x1 > 0 

0, x1 > 0 

(0, 1-1 , x2 < 0 

u (x) = (1, 0 )  , x2 = 1 (0, 0) , x1 = x2 = 0 . 

2 
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P i c t o r i a l l y :  

Figure 2. 

I n  each case, t h e  c l a s s i c a l  so lu t ion  of  t h e  equat ions  of  motion e x i s t s  

f o r  a r b i t r a r y  i n i t i a l  da ta ,  i s  uniquely defined f o r  a l l  t 2 0, depends cont inuously 

on t h e  i n i t i a l  d a t a  and reaches ',he o r ig in  i n  minimum poss ib l e  time. These 

same p r o p e r t i e s  a r e  t r u e  w i t h  strategy l w h e n  so lu t ions  a r e  considered i n  t h e  

sense of Fi l ippov,  however i n  t h e  case of s t r a t e g y  2 t h e  F i l i ppov  s o l u t i o n s  

become r e s t  so lu t ions  when a s t a t e  w i t h  x2 = 0 i s  a t t a ined .  Therefore,  so lu t ions  

i n  t h i s  sense,  do  r l c t  reach t h e  t a r g e t  S. T h i s  occurs  s i n c e  t h e  f i rs t  cvmponerit 

bf t h e  vector f i e l d  ud(x) i s  zerG exctpt  on a set  of measure zero, i . e .  t h e  

x, axis. From a p r a c t i c a l  viewpoint, s ince t h e  c o n t r o l  s i g n a l  i s  determined 

by a s t a t e  measurement, one should not expect s e t s  of  states having measure 

zero t o  i n f luence  t h e  so lu t ion .  From t h i s  viewpoint, t h e  F i l i ppov  so lu t ion  i s  

t h e  more r e a l i s t i c  not ion.  

.a. 

II-- - - - - - - a : - -  -v--r\lo T . T i t h  the yrnyey choice of strategv, i . e ,  
r - - y  A L L  b,,G PAL'& 'A"b -__-I 

s t r a t e g y  1, an opt imal  feedback c o n t r o l  ex is ted  whether s o l u t i c n s  a r e  taken i n  

t h e  sense o f  F i l ippov o r  t h e  c l a s s i c a l  sense. The fbl lowing example w i l l  shcw 

t h a t  t h i s  need not  always be  t h e  case; i.-. we w i l l  produce a feedback c c n t r o l  



synthesized from opt imal  open loop cont ro ls ,  which i s  an opt imal  feedback 

c o n t r o l  i f  so lu t ions  a r e  taken  i n  t h e  c l a s s i c a l  sense.  However an opt imal  

feedback con t ro l  f o r  so lu t ions  taken i n  t h e  sense of F i l ippov w i l l  not  e x i s t .  

Example 2. Let t h e  equat ions of motion be: - 

x1 = x2 

x2 = -xl + u , O S U S l  , l X 0 l < 2  (4) 

with t h e  opt imizat ion problem being t o  minjmize t h e  c o s t  func t iona l  
t f  2 2  2 I u[(xl- l )  + x2 - 13 d t  where tf i s  t h e  smallest nonnegative t ime a so lu t ion  
0 

reaches the  o r ig in .  

2 2  
The open loop s t r a t e g y  of u = 0 u n t i l  t h e  c i r c l e  (xl-l)  + X2 = 1 

i s  reached, a t  which t ime a switch t o  

t raversed  i n  a clockwise fashion,  produces a t r a j e c t o r y  which reaches t h e  

o r i g i n  w i t h  zero cos t .  

t o  t h e  following vec tor  f i e l d  f o r  (4) :  

u = 1 allowing t h i s  c i r c l e  t o  be 

The corresponding synthesized feedback c o n t r o l  1 eads 

2 2  

2 2  

. O  i f  ( ~ ~ - 1 )  + x2 t 1 
1 i f  ( ~ ~ - 1 )  + x2 = 1 I where U ( X )  = 

-xl + u(x)  
x(x)  = 

On t h e  o ther  hand K(X(xl,x2)) = {( x2 )' s i n c e  u(x) i s  1 only  on a set  of ze ro  
-x, J I 

measure, and t h e  corresponding Fi l ippov s o l u t i o n s  w i l l  not  reach t h e  o r i g i n .  

From t h e  form of t h e  c o s t  func t iona l ,  it i s  seen t h a t  f o r  any func t ion  U ( X )  

f o r  which the corresponding so lu t ions  i n  t h e  sense of  F i l ippov reach t h e  o r ig in ,  

t h e r e  w i l l  be a p o s i t i v e  c o s t  involved. Since t h i s  value can be  made a r b i t r a r i l y  

small, bu t  not zero, an opt imal  feedback c o n t r o l  f o r  s o l u t i o n s  i n  t h e  sense of 

F i l ippov w i l l  not e x i s t .  
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§2. S t a b i l i t y  with Respect t o  Measurement. 

An examination of t h e  two vector  f i  I d  of  exampl 1 shows a type of 

s t a b i l i t y  present  i n  t h e  first which i s  not  present  i n  t h e  second. 

For no ta t ion  ease, i f  f i s  a bounded func t ion  on a real i n t e r v a l  [O,T] 

with va lues  i n  8, l e t  

U(x, 6) t o  denote a compact, sphe r i ca l  neighborhood of r ad ius  6, about t h e  

poin t  x E E", and coA t o  denote the  convex h u l l  of a set  A. 

\ I f 1 1  = ess .  sup. ( l f ( t ) l  , t E [0, TI). We w i l l  use  

Def in i t i on .  A vector  -- f i e l d  

with - a r b i t r a r y  i n i t i a l  d a t a  - 
measurement i f  - given E > O  

x, 
0 

X 

and - 

for - which a - c l a s s i c a l  so lu t ion  9 of - j ,  = x(x)  

e x i s t s  

f i n i t e  

-I i s  sa id  t o  be s t a b l e  with r e spec t  t o  ------ - 
a - 6 > 0  such t h a t  when- --- 

n ever & i s  a measurable func t ion  with va lues  i n  E and norm less than  6 f o r  - -- --- ---- - 
which a corresponding so lu t ion  $ ( i n  classical sense) of % ( t )  = X(x(t)  + E ( t ) ) ,  

x ( o )  = x , e x i s t s  on [0, T] then 119 - < E. 

-- - - -  
0 

' -  
For t h e  remainder of t h i s  s ec t ion  we w i l l  a s s m e  X i s  a measurable 

n func t ion  defined on a domain Q i n  En with va lues  i n  a bounded set i n  E . 
O u r  concern w i l l  be  with r e l a t i n g  t h e  concepts of s t a b i l i t y  with r e spec t  t o  

measurement, F i l ippov so lu t ions  and c l a s s i c a l  so lu t ions .  I n  p a r t i c u l a r ,  lemma 3 

w i l l  show t h a t  if $ is  a Fi l ippov so lu t ion  of 2 = X(x) , x(0)  = x (such 
0 

s o l u t i o n s  do e x i s t )  then  f o r  any 

& with  II&ll < 6 such t h a t  a c l a s s i c a l  so lu t ion  cp of  = X(x + e( t ) )  , x(0)  = x 

exis t s  and s a t i s f i e s  

E, 6 > 0 , t h e r e  e x i s t s  a measurable f'unction 

0 

119 - 41 < E. T h i s  e s s e n t i a l l y  says t h a t  i f  one al lows 

a r b i t r a r i l y  small per turba t ions  of t he  argument, a response t o  any vec tor  f i e l d  

X may be  made t o  agree c lose ly  with a response t o  t h e  assoc ia ted  F i l ippov 

genera l ized  f i e l d  K(X( * ) )  . After  t h i s  has been es tab l i shed  one e a s i l y  obtains:  

Theorem 1. If X i s  s t a b l e  with respec t  t o  measurement then every c l a s s i c a l  - --- - -- 
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s o l u t i o n  i s  a F i l ippov  so lu t ion .  

Lemma 1. Let JI b e  an abso lu te ly  continuous func t ion  on [o, T] with va lues  

- i n  En, - and z - a measurable func t ion  with z ( t ) E  K(X(q( t ) ) ) ,  t E [O, TI. Then 

- -  

-- - -- - 

1 k 
given any 6 > 0, t h e r e  e x i s t  a f i n i t e  numDer of  measurable func t ions  , - * -  P -- ------ 

i with ui ( t ) t  U ( $ ( t ) ,  6) such t h a t  t h e  func t ion  v def ined - by v i ( t )  = x ( m i ( t ) )  

a r e  measurable and f o r  any E > 0, z ( t )  i s  contained -- i n  an E neighborhood - of - --- -- 
1 k 

co(v  ( t ) ,  ..., v ( t ) ) .  

Proof Fil ir ipov [ 31 shows t h a t  t h e  requirement z (  t )  E K( X( $( t )  ) )  i s  equiva len t  

t o  t h e  condi t ion  t h a t  f o r  any vec tor  7 , 

z ( t ) . 7  5 l i m  (ess.  max ( x ( u ) - ~  : uEU(q(t), r))) 
u -10 

( 5 )  

o r  equ iva len t ly  z ( t ) - q  s ess. max ( X ( U ) . ~  : uEU($(t), r)) f o r  every  r > 0.  

Let  z be any measurable func t ion  with z ( t ) E  K(X($(t))). Suppose we 

are given 6, E > 0. Pick an a r b i t r a r y  vec to r  7 0 ; w e  w i l l  f i r s t  show t h a t  

one can cons t ruc t  a measurable func t ion  u: with m ( t ) E  U ( $ ( t ) ,  S) such t h a t  

f o r  t E [0, TI. 

Subdivide t h e  i n t e r v a l  [0, T]  i n t o  s u b i n t e r v a l s  by a p a r t i t i o n  

0 = t < t < . . . < t = T and l e t  S ( t - t . )  be a cont inuous r ea l  valued func t ion  

def ined on [ti, 
0 1  m 1 

) with 6 ( 0 )  = 6, 6 2 6 ( t - t . )  2 6 /2  and such t h a t  ti+l 1 

f o r  

i s  an immediate consequence of  t h e  uniform c o n t i n u n i t y  of $ on [0, TI. 

ti 6 t' 5 t < ti+l. The ex i s t ence  of such a p a r t i t i o n  and func t ion  G ( t - t i )  
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Figure 4 
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Cross sectims with t cons tan t  are 
t h e  neighborhoods U($(t), G(t-t i)) .  

For any el > 0 , by Luzins' theorem we may cloose a compact subse t  

Ei(e1) of U($(ti), 6) d i f f e r i n g  i n  measure from U($(ti), 6) by less than  

E and such t h a t  X i s  continuous on Ei(cl). Then f o r  every t E [ti, t i + l )  1 

t h e  set E . ( €  ) 1 1  

on which X(.)*v i s  continuous. L e t  vE ( t )  = max.(X(o)*v : w E Kt). By (7), 

v i s  a monotone decreasing func t ion  on [ti, 

theorem 1, [2] t h e r e  e x i s t s  a measurable func t ion  (u with o ( t )  E Kt such t h a t  

X(cu(t))-q = vE ( t )  (Here we have replaced t h e  condi t ion  of 

t h e  s e t s  Kt expanding, Kt C Kt, for  t < t' i n  t h e  c i t e d  theorem, by Kt 

cont rac t ing ,  K t C  Kt, 

s i n c e  t h e  d i r e c t i o n  of t r a v e r s i n g  t h e  time a x i s  i s  immaterial .)  

Kt = E i ( ~ l )  n U($( t ) ,  G( t - t i ) )  i s  a nonempty compact subset  of  

1 
) hence measurable. By %+l 1 E 

, t E: [ti, ti+l). 
1 

fo r  t' < t ; a condi t ion  which does not  alter t h e  proof 

Th i s  d e f i n e s  t h e  func t ion  0) on t h e  sub in te rva l  [ti, ti+l) ; s ince  

i w a s  a r b i t r a r y  we may assume (u t o  be def ined on LO, T] as t h a t  func t ion  

whose r e s t r i c t i o n  t o  [t,, t ) i s  defined as above. - i+l 

For any cl > 0 

t h e  lat ter i n e q u a l i t y  following from ( 5 )  , or vE ( t )  < ess max.{X(u)*q : 

e i t h e r  vc ( t )  B ess. max. {X(u)*q : u E U($(t), 6/2)) 4 
1 

z ( t ) * v  , 
u E U($(t) ,  6/2)). 

maximum of X ( * ) * ?  occurs  i n  U($(t) ,  6)- U(#(t) ,  6/2) and i n e q u a l l t y  (6) holds  

1 
In t h e  first case  we deal with t h e  s i t u a t i o n  where t h e  

even wi th  E = 0. 
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In  t h e  second case, f o r  f ixed  t, v ( t )  i s  an inc reas ing  func t ion  
1 E 

of  c1 

i f  E '  < E Since, i n  t h i s  case  v ( t )  < ess.max(X(u)*q : u E U($(t) ,6/2)],  

we may take  a sequence of va lues  E t ending  t o  zero. The corresponding 

bounded monotone sequence of  r e a l  numbers v ( t )  must converge t o  ess.max(X(u)*7 : 

u E U ( $ ( t ) ,  6 / 2 ) )  

t h e  d e f i n i t i o n  of ess.max. t h e r e  e x i s t s  a s e t  F of p o s i t i v e  measure on w h i c h  

s ince w e  may assume, without l o s s  of  genera l i ty ,  t h a t  Ei( €1) 3 Ei( E ~ )  1 

1 1' E 1 
1 

< 

1 E 

; indeed i f  it converges t o  a number 61 less  than  t h i s ,  by 

X( . )*v  > i i ~  . 
measure of F. 

TO ob ta in  a con t r ad ic t ion  we need only  choose E l e s s  than  t h e  1 

T h i s  e s t a b l i s h e s  t h a t  for E~ s u f f i c i e n t l y  small, t h e r e  e x i s t s  a 

measurable funct ion LO with va lues  u ( t ) E  U($(t) ,  6) such t h a t  v ( t )  = X ( u ( t ) )  

i s  measurable and i n e q u a l i t y  (6) i s  s a t i s f i e d .  (Note: It i s  not  t r u e  i n  genera l  

t h a t  a measurable func t ion  of  a measurable func t ion  i s  measurable.) 

NOW l e t  sn-l be  an n-1 sphere i n  En which conta ins  

sn- 1 X(U($(t), 6); t h i s  e x i s t s  by hypothesis .  Since i s  compact 
"t,c[O, T I  

choose a f i n i t e  number of vec to r s  9 , i = 1, 2, ...,k belonging t o  

and so t h a t  €12 neighborhoods of t h e  vi cover 

i as before ,  a func t ion  w , measurable with va lues  

(6) .  Let v be  t h e  corresponding measurable funct ion;  v ( t )  = X ( u i ( t ) ) .  Then 

z ( t )  ( V  (t),  ..., V ( t ) ) .  

i sn- 1 

sn- 1 . For each 7 i cons t ruc t ,  

wi(t)EX(U($(t), 6 ) )  s a t i s f y i n g  
i i 

1 k 
i s  contained i n  an E neighborhood of  t h e  convex h u l l  o f  

1 Lemma 2. - L e t  v , . . . ,vk  - be bounded measurable func t ions  def ined =[O, T I  with 
1 k ' A ( t )  = ( v  (t),  ..., v ( t ) ) .  Let c o A ( t )  denote  t h e  convex h u l l  o f  A ( t ) .  - Then - ----- 

i f  z - -  i s  a measurable func t ion  with va lues  z ( t )  contained -- i n  an  E neighborhood 

of  c o ( A ( t ) ,  t h e r e  e x i s t s  a measurable func t ion  v w i t h  va lues  i n  J(t) - such 

t h a t  I/[.( .)  - v(T)]dT( < E(T+l) uniformly - f o r  t E [0, T I .  

-- - 

- --- --- 
t 

0 

Proof. a) We w i l l  f i r s t  show t h e r e  i s  a measurable funct, ion y with va lues  

y ( t )E  co:A(t) such t h a t  IIz-dl 5 E. 



Using t h e  terminologjr of [4], if  z ( * )  i s  measurable s i n g l e  valued 

func t ion  then  U ( z ( - ) ,  E )  i s  a measurable many valued funct ion.  Indeed, i f  

B(yo, r) 

= (t: I z ( t )  - y I 5 r + E) 

0 i s  a closed b a l l  of r ad ius  r, cen te r  y , { t  : U(z( t ) ,  E )  n B(yo, r )  0) = 

0 which i s  measurable. 

i 
Next, s ince  t h e  func t ions  v are measurable, we w i l l  show c o d ( * )  

i s  a measurable set valued funct ion.  Obviously d o i A ( t )  i s  nonempty and closed 

0 Sn- 1 f o r  each t. Let t ing  B(y , r) be es above and denote t h e  uni t  n-1 

sphere we note  t h a t  t h e  d i s t ance  from t o  t h e  

o r i g i n  i s  max (min q*(v i ( t ) -yo ) ) .  Then 

1 k 
co{(v ( t ) -y ' ) , . . . , (v  ( t ) - y o ) )  

7€Sn-l lSiSk 

which i s  measurable. 

From [ 41, U( z( e ) ,  E) n co A( ) i s  again a measurable set valued 

func t ion  and t h e r e  e x i s t s  a measurable s i n g l e  valued func t ion  y with 

Y W E  U ( Z ( t ) ,  4 n c o c A ( t ) .  

b) We next  show t h a t  i f  y i s  a measurable func t ion  on [0, t'] 

with y ( t ) E  co d(t) f o r  each t E [0, t' ] then  y admits t h e  r ep resen ta t ion  

y ( t )  = i=l a i ( t ) v  (t) where t h e  s ca l a r  valued func t ions  ai are measurable, 

0 B a ( t )  5 1 and Ci-lai(t) = 1 f o r  a l l  t E [O, t' 3 .  

k i 

k 
i - 

T h i s  r e s u l t  i s  c l o s e l y  r e l a t ed  t o  lemma 1 [ 6 ] ;  which would y i e l d  t h e  

i des i r ed  r e s u l t  i f  t h e  func t ions  v were ccntinuous. To modify t h i s  t o  t h e  

p re sen t  case  where t h e  v are measuralie, ?{t, z) = N 1' (t! , 

Q = ( a  E Ek z ciZlai = 1, 0 6 a. I l), 

cont inuous i n  CY f o r  each f ixed  t. Refer r ing  now t o  t h e  proof of t h e  lemma 

zi , respec t ive ly ,  of  F i l i ppov  [ 5 ]  and l e t t i n g  ai, v play t h e  r o l e  of t h e  uiy 

i k i 
- i d  1 

k 
and R ( t )  = f(t ,  e). Then f i f  

1 

i 
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1 k i n  t h a t ,  proof, choose t h e  s e t  E t o  be so t h a t  al ,..., aSml,v ,..., v and 

y are continuous i n  E. Because of t h e  s p e c i a l  form of f it fol lows t h a t  

and t h e  F i l ippov argument may be appl ied f (t, a)  i s  continuous on E X Q 

t o  g ive  t h e  des i red  r ep resen ta t ion  f o r  y. 

c )  From theorem 1 [6], it now fol lows t h a t  f o r  any i n t e r v a l  [0, t ' ]  

t h e r e  e x i s t s  a measurable funct ion v with va lues  v ( t ) E t l ( t )  f o r  each 

t E [0, t ' ]  such t h a t  

i Since t h e  func t ions  v were bounded t h e r e  i s  a cons tan t  M such 

t h a t  5 M , 1141 5 M. Subdivide t h e  i n t e r v a l  [0, T] i n t o  m equal  sub- 

i n t e r v a l s  each of  length  T/m. Let I denote  t h e  i n t e r v a l  ( jT /m,  ( j+ l )T /m] .  
j 

Using (8) f o r  each j = 0,. . ., ( m - 1 )  , d e f i n e  v on I so t h a t  I, [U(T)-V(T)ldT = 

j t  
j 

0. Now i f  m i s  chosen so  l a r g e  t h a t  m 2 2Ml'/~ it fol lows t h a t  1 I , [ y ( ~ ) - v ( ? ) l d ~ I  

< E uniformly f o r  t E [0, TI. 

d )  To f i n i s h  t h e  proof we show t h e  func t ion  v constructed i n  p a r t  
t 

c )  s a t i s f i e s  t he  conclusions o f  lemma 2, Indeed I /  [ z ( T ) - v ( T ) ] ~ T  I = 
t t o t  

I I C Z ( + Y ( d  + Y ( T ) - V ( d l d T  I s I /  [zW-Y(T)IdTl  + l I o [ Y ( r ) - v ( ~ ) l d ~ l  6 
0 0 

E T + E = E[T + 11 ; using t h e  r e s u l t s  o f  a) and c) , r e spec t ive ly .  

0 Lemma 3 .  L e t  JI be a Fi l ippov so lu t ion  of  2 = X(x) , x(0) = x . Then f o r  

any E , 6 > 0 t h e r e  e x i s t s  a measurable func t ion  & : [0, T I  + E  with 

II&ll < 6 such t h a t  a c l a s s i c a l  so lu t ion  cp e x i s t s ,  on t h e  i n t e r v a l  [0, T I ,  

- - - -  
n 

--- 

-- --- 

f o r  t h e  problem 2 = X(x + &(t))  , x ( 0 )  = x 0 4 sa t i s f ies  Ilcp-911 < E. -- 

Proof. L e t  i(t) = z ( t ) E  K(X(JI(t))) .  By lemma 1 t h e r e  e x i s t  k measurable 

1 k i funct ions  CD ,...,a with a i ( t ) E  U ( $ ( t ) ,  6 / 2 )  such t h a t  t h e  func t ions  v 
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defined by v i ( t )  = X( ,o i ( t ) )  are measurable and z ( t )  i s  contained i n  an 

E / ( T + ~ )  neighborhood of co(v ( t ) ,  ..., v ( t ) ) .  
1 k 

1 
By lemma 2, t h e r e  e x i s t s  a measurable func t ion  v with v ( t ) E ( v  (t),  

t k ..., v ( t ) )  such t h a t  \I [ v ( T )  - x(?)]d'rl < E uniformly f o r  t E [0, TI .  

Define t h e  measurable func t ion  LO by u(t) = U) (t) i f  t i s  such t h a t  

v ( t ) = v  (t). Then o i s  measurable, o(t) E U ( $ ( t ) ,  6/2)  and X ( w ( t ) )  = v ( t ) .  

i 0 

i 

- -  we next  produce t h e  absolu te ly  continuous func t ion  Cp and measurable 

func t ion  & i n  t h e  s ta tement  of t h e  lemma. 
t t 

Define q ( t )  = xo + I v(T)dT. Then lCp(t)-*(t)l = 11 [ v ( ~ ) - z ( T ) ] d ~ l <  E 

0 0 

f o r  t E [0, T] hence C p ( t )  E U(*(t) ,  E )  and llT-$ll 5 E. Define &(t) = 

w ( t )  - C p ( t ) .  Then & i s  c e r t a i n l y  measurable and l&(t)l = Ico(t)-$(t)+*(t)-cp(t)l~ 

4 6/2 + E. There i s  no l o s s  i n  gene ra l i t y  i f  it i s  assumed E < 6/2. Therefore 

11 ell < 6. 

Also, c p ( t )  + &(t) = U)(t)  hence X(Cp(t) + e ( t ) )  = v ( t )  and from t h e  
t 

d e f i n i t i o n  of 9, T ( t )  = xo + 1 X ( c p ( ~ )  + & ( ? ) ) d T  showing t h a t  cp i s  a c l a s s i c a l  

s o l u t i o n  of 
0 

0 H = X ( X  + e ( t ) ) ,  X(O)  = x . 

Proof of Theorem 1: We s h a l l  prove t h e  cont rapos i t ive ;  i .e .  i f  some c l a s s i c a l  

s o l u t i o n  e x i s t s  and i s  not a F i l ippov so lu t ion  then  t h e  f i e l d  X i s  not  s t a b l e  

w i t h  r e spec t  t o  measurement. 

- 

The assumption t h a t  some c l a s s i c a l  so lu t ion  i s  not a F i l ippov  so lu t ion  

0 0 
imp l i e s  t h e r e  e x i s t s  x and c l a s s i c a l  so lu t ion  through x e x i s t i n g  on 

some i n t e r v a l  [O, t,] such t h a t  t he re  i s  a Fi l ippov so lu t ion  Jr through xo 

with  cp(T) - $(T) .) 0 f o r  some T E (0, tl]. Let  I V ( T )  - $(T)I = r > 0, p ick  

E = r/2. a r b i t r a r i l y  s m a l l ,  we can f ind  a c l a s s i c a l  

s o l u t i o n  g of 2 = X(x + &(t)), x(0) = x such t h a t  1 S ( T )  - $(T)I < E 

hence Iq)(T) - ( (T)I  > E, i.e. X i s  not s t a b l e  with r e spec t  t o  measurement. 

- 

Then by lemma 3 ,  f o r  IIell 
0 
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We s h a l l  end by b r i e f l y  summarizing some a d d i t i o n a l  p rope r t i e s  of 

vec tor  f i e l d s  which a r e  s t a b l e  with r e spec t  t o  measurement. 

I f  X i s  s t a b l e  with r e spec t  t o  measurement, t h e  so lu t ions  of 

= X(x) fo r  t 2 0, a r e  unique. This  follows as an immediate consequence 

of t h e  de f in i t i on .  

I f  X i s  s t a b l e  with r e spec t  t o  measurement and q( t l ,  xo) denotes  

0 
t h e  so lu t ion  through i n i t i a l  da ta  x evalimted a t  t ime tl > 0, then  q( t , , ' )  

i s  continuous. 

Indeed suppose xk + xo but  Cp(tl, xk) f. q(t , ,  xo) Then t h e r e  

e x i s t s  a 6 > 0 such t h a t  I C p ( t l '  xk) - Cp(t,, xo)I Z 6 f o r  a l l  k s u f f i c i e n t l y  

la rge .  L e t  & ( t )  x - xk ; i . e .  a cons tan t  measurement e r ro r .  For k 

s u f f i c i e n t l y  l a rge ,  \ I & / \  can be made a r b i t r a r i l y  small. 

k 0 

k k k o  k Since +(t, x ) = X(Cp(t ,  x ) )  , i f  we de f ine  t k ( t )  = Cp(t,x )-x + x 

then  ik(t) = $(t, xk) hence ik(t) = X(Ek(t) + E k ( t ) )  and k (0) = x 0 . From 

k 
t h e  d e f i n i t i o n  of t k  , f o r  k s u f f i c i e n t l y  l a r g e  115 - Cp(', xk)/I can be  

made a r b i t r a r i l y  small; it follows t h a t  116 - Cp(*, xo)II > 6/2 f o r  k suf- 

f i c i e n t l y  la rge ,  hence X i s  not  s t a b l e  w i t n  r e spec t  t o  measurement. 

k 
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ABSTRACT 

A survey of various approaches to the problem of estimating 
the domain of attraction of an equilibrium solution to a system 
of nonlinear autonomous differential equations is given. Based 
upon observations resuiting f rom this survey the problem is re- 
formulated as that of optimally choosing the LiaprJnov function 
from the space of positive definite quadratic forms. An esti- 
mate of the domain of attraction is then obtained as th.e solution 
of a minimization problem. This approach to the problem has 
the advantages of: 1) being designed specifically for machine 
computation; 2) yielding an estimate that is readily visualized; 
and 3) being relatively insensitive to system dimension. Sone 
preliminary numerical results are presented for the E~ff - ing  
equation with damping. 
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Introduction 

This presentation is concerned with the problem of computing 
the restrictions on the initial state errors in a dynamic system 
which will guarantee that these state errors will tend to zero 
as t-. Thus, we shall be concerned with developing an effi- 
cient numerical technique for estimating the domain of asymptotic 
stability or mare succinctly the domain nf attraction of the 
null solution. 
predicting the attitude motions of a satellite and perhaps may 
provide a first step toward solving the problem of qualitatively 
evaluating the effects of disturbances upon various rocket 
guidance schemes. 

This problem has application in qualitatively 

The applicability of this analysis to rocket guidance prob- 
lems is crucially dependant upon the 
the vehicle off the nominal path can 
state differential equation, viz., 

5 = g(x,u(x)) = h(x), 

assumption that motions of 
be described by an aatonomous 

h(0)  = 0 

where x(t) is the n-vector describing the deviation from the 
nominal state, u(x) represents the control 'Law designed to 
control this deviation, and the null solution is an equilibrium 
solution. The domain of attraction 9 is then defined as the 
set of all initial points that generate trajectories that tend 
toward the equilibrium solution, i.e., 

0) 
R : (x0I &i.+%x(t;x 0 ,t ) = 

0 

The only body of theory that has been applied to the general 
1 - 2 -  - e  -LL-^_C:^-. ..- l < " - , . * - . 7 1 m  - -  proDiem of e s c i m a i i i i l ;  Gic uuiiiaui UL a L G L c L L L c w u  I, YA-rU..V. 

direct method. 
proaches that have been taken to determine the domain of attraction. 

Within this theory there are two distinct ap- 

The first of these approaches, due to V. I. Zubov [ 11, 
allows an exact solution to the problem, if an arbitrary function 
can be chosen such that a closed form solution is obtained !'or 
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Zubov's partial differential equation, or it allows an estimate 
of the domain of attraction via a truncated power series solu- 
tion to the equation. That is, if a positive definite 6(x) 
can be found such that the Zubov linear partial differential 
equations 

Vxv(x) h(x) = -6(x) (1 - v (x)) 
or 

VXv(x) h(x) = -6(x) (1 - v (x)) (1 + h(x) h(x)) 

can be solved exactly for v(x), then R is given by 

( 3 )  

(4 )  

(5) 

If a power series solution is obtained in the form 

i V"(X) = 2 V,(X> , Vi(CIX) = a Vi(X) , 
i= 2 

a series of homogeneous forms, then an estimate Rn of R 
is obtained via 

an : (XI 0 < vn(x) < 1) 9 

and 

a n C R  . 
In 1962 Margolis and Vogt [ 2 ]  reported on a procedure which 

employs a digital computer to develop the series solution to 
Zubov's equation for a class of differential equations of dimen- 
sion two. The authors noted two principal problems: 1) com- 
putational problems arise for systems of higher dimension; and 
2) the convergence of the series solution is far from uniform, 
i.e., the estimate obtained fo r  the Van derPol equation by 
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using only second degree terms in the series was better than the 
estimate obtained by including terms up to sixth degree. 

During 1962 and 1963 Szego [3] reported on methods for 
solving Zubov's equation in vector-matrix form (these methods 
are related to his earlier work [4] on generating Liapunov 
functions via a "quadratic form" whose coefficients are functions 
of the state variables) and in [5] on a generalization of Zubov's 
equations. 
Geiss 161. Although some results regarding identification of 
limit cycles and estimation of domains of attraction are reported, 
no results regarding the conversion of these processes to numer- 
ical algorithms are given. 

The latter was pursued somewhat further by Szego and 

Rodden [7] and [8] reported in 1964 on an algorithm he 
developed for both calculating the solution to Zubov's equation 
in series form and analyzing the resulting Liapunov function. 
His work was restricted to problems of dimension two and three, 
and his results indicated three principal problems: 1) lack of 
uniform convergence of the series solution to Zubov's equation; 
2) strong dependence of the final result upon the choice of the 
arbitrary or "constraint" function e(x) in Zubov' s equations; 
and 
particularly for three dimensional systems. Rodden found, in 
some examples, that the second degree approximation was better 
than the 2Oth, and that the convergence of this series solution 
could be improved by solving a modified Zubov equation. 
ever, this change still did not guarantee that higher order 
approximations would be better than lower order approximations. 

3) visualization of the estimate of the domain of attraction, 

How- 

The second principal approach to estimating the domain of 
attraction is to base the analysis upon La Salle's theorems on 
the extent of asymptotic stability [SI and use one of the many 
procedures for developing Liapunov functions that are available 
in the literature [lo] and [ll]. This tack was reported on in 
1962 by Infante [12] and Infante and Clark [13]. 
an ingenious and successful procedure for developing Liapunov 
functions for two dimensional systems based upon an approximation 
to the dynamic svstem. Although estimates are easily obtained 
from his Liapunov functions, the technique for generating the 
functions does not appear to be suited to machine computation. 
Infante's work was developed in 1964 by Walker [14] for systems 
of higher dimension but again the technique is not suited to 
machine computation. The present author [151 reported in 1964 
some favorable results obtained from a cursory look at the value 

Infante developed 
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of using "optinial" quadratic form Liapunov functions for esti- 
mating the domain of attraction. 
extension of this concept .) 
using the analysis algorithm developed by Rodden [ 7 ] ,  developed 
a numerical technique for estimating the domain of attraction 
of relay control systems via an "optimal" choice from the class 
of Lure-Liapunov functions. 

(This paper reports on an 
In 1965, Weissenberger [161 and [ 171  , 

Thus, upon reviewing the history of this problem the follow- 
ing remarks become apparent: 

1. 

2 .  

3 .  

4 .  

The majority of techniques for generating Liapunov 
functions are unsuitable as bases for machine 
computation of Liapunov functions because of 
the requirement of experience and ingenuity in 
their application. 
i.e., series solution of Zubov equations, Lure- 
Liapunov formulation, and quadratic forms, the 
Zubov approach suffers from erratic convergence 
and lack of knowledge of how to choose the 
constraint'' function. 

Of those which are acceptable, 

I '  

The method of analyzing the Liapunov function 
to determine an estimate of the domain of 
attraction should be relatively insensitive 
to system dimension. 
on geometric analysis to determine points of 
tangency of hypersurfaces and hence is directly 
dependent on system dimension. 

Rodden's technique depends 

The estimate of the domain should be easy to 
visualize if it is to be of engineering value. 
A glance at the figures constructed by Rodden 
for three dimensional problems, and recognition 
of the fact that rocket guidance systems are 
of at least dimension four gives strong motivation 
to this statement. 

Little attention has been given to selecting 
the "optimal" Liapunov function from a given 
class of functions; rather, the emphasis has 
been on new methods of generating Liapunov 
functions. 



Based upon these remarks, the Liapunov function to be used in 
this analysis will be restricted to be a member of the class of 
positive definite quadratic forms. This restriction guarantees 
that the estimate of the domain of attraction will always be an 
ellipsoid and thus easier to visualize than the results of higher 
order estimates. Secondly, based upon the results of Margolis 
and Vogt [2], and Rodden [ 7 ] ,  there is reason to believe that 
this estimate may be better than those obtained by using functions 
of higher degree, particulary if the quadratic form parameters 
are optimally chosen. Finally, information may be gained that 
will aid in formulating a best choice of the "constraint" function 
e(x) for Zubov's equations. 

Problem Formulation 

Consider the basis of this analysis, i.e., 

Theorem (La Salle 1151): 

Let V(x) be a scalar function with continuous first 
partial derivatives. Let " a  designate the region where 
V(x) < 1. Assume that I;zl is bounded and that within RQ: 

V(X) > 0 for x # 0 
+(x) < o for x + o . 

Then the origin is asymptotically stable, and above all, 
every solution in QQ tends to the origin as t+w. 

Thus, "1 is an estimate of R and the problem is reduced 
to choosing V(x) 
establishing that the required properties exist in some domain. 
That is, the following must be accomplished: 

from the class of quadratic forms and then 

1. Prove that V(x) is positive in some region 
that includes the origin. 

Prove that 
some region including the origin. 

2 .  c(x) = W h(x) is negative in 

3 .  Establish a region within which both 1 and a 2 hold. 

4 .  Prove that R is bounded. a 



Now s ince  V(x) is r e s t r i c t e d  t o  be a pos i t ive  d e f i n i t e  quadratic 
form, v i z . ,  

T v(x) = x Px , P > 0 

it i s  posi t ive everywhere. Further ,  r e s t r i c t  the system equation 
(1) t o  have a s t a b l e  l i n e a r  p a r t ,  i . e . ,  l e t  

j ,  = h(x) = AX + f(X) 

where A i s  a s t a b l e  matrix ( i t s  eigenvalues a l l  have negative 
r e a l  par t s )  and f (x)  contains no terms of f i r s t  order i n  x. 
This i s  not an inordinate  assumption s ince our present technology 
only allows synthesis  based upon e s s e n t i a l l y  l i n e a r  ana lys i s  and 
thus a system with s t a b l e  l i n e a r  approximation usua l ly  r e s u l t s .  

.Based upon the assumption of equation (10) the ca lcu la t ion  
o f  V(x) r e s u l t s  i n  

T T  T i ( x )  = x (A P + PA)x + 2x Pf(x) 

and choosing 

T - Q = A P + P A  

r e s u l t s  i n  

. T T V(X) = -X QX + 2~ Pf(x) . 
Thus, i f  Q i s  pos i t i ve  d e f i n i t e  c(x)  w i l l  be negative i n  a 
region including the o r ig in  by v i r t u e  of t he  f a c t  t h a t  f (x)  
contains no terms of f i r s t  order i n  x .  Now, s ince  A i s  
assumed s table  w e  know t h a t  every pos i t i ve  d e f i n i t e  Q w i l l  
produce a posi t ive d e f i n i t e  P (Kalman and B e r t r a m  [181) and 
thus requirements 1 and 2 a r e  s a t i s f i e d .  



The establishment of R is next on the agenda. By virtue 
of our restriction on 
c1 < c2 < c3 < ... < Ci < ... < cn will be a set of ellip- 
soids of fixed orientation and increasing size. Thus 0' 
should be chosen to be the interior of the largest such ellip- 
soid within which 
smallest one which has a point of contact with the hypersurface 
given by 

V(x) 'the set of hypersurfaces V = ci, 

0 < 0, and that ellipsoid will be the 

9 = 0, x # 0 (see Fig. 1). 

5 v = c  

v = c4 

v = c3 

v = c2 

v = c1 

x1 
4 

-/ 
'2<'3 ... 

0 

Fig. 1 Typical Relationship of the Loci V = 0 and V = constant 
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The problem i s  then one of ca lcu la t ing  

R = min V(x) subject t o  c(x)  = 0 . 
d o  

It i s  exac t ly  a t  t h i s  point t h a t  a computer i s  of most value.  
Also, note tha t  s ince  

i s  an e l l i p s o i d  i t  i s  bounded and requirement 4 i s  s a t i s f i e d .  

We have t a c i t l y  assumed above t h a t  there  i s  a so lu t ion  
t o  the  problem stated i n  (14),  a s u f f i c i e n t  condition f o r  ex is -  
tence i s  obtained as follows. Consider t h a t  we must prove t h a t  

T T 
-X QX + 2x P f ( x )  < 0 

i n  some domain D including the  o r i g i n .  Now note t h a t  

v i a  the Schwartz inequal i ty ,  and using the  extrema1 proper t ies  
of c h a r a c t e r i s t i c  values of penc i l s  of quadrat ic  forms, 
Gantmacher [ 1 9 ] ,  

2 where Amx(P2) is the maximal eigenvalue of IJ . S i m i l a r l y ,  

where Amin(Q) i s  the  minimal eigenvalue of Q.  Thus, (16) 

54 



is  s a t i s f i e d  i f  

Since Q and P are pos i t ive  d e f i n i t e  

min 
A = K 2 > 0  
2 hmaX (P) 

and thus (20) i s  a spec ia l  case of a Lipschi tz  condition. 

The r e s u l t s  of th is  procedure are dependent upon the choice 

f o r  a p a r t i c u l a r  c r i t e r i o n  
, thus of Q and f o r  each Q there  w i l l  be a d i f f e r e n t  RQ 

perhaps there  i s  a bes t  choice of Q 
funct ion.  The most obvious c r i t e r i o n  is  the  volume of RQ 
and thus the las t  s t ep  i n  the analysis  i s  t o  def ine 

and 

The computational procedure w i l l  then be as follows: 

1. choose Q > 0 

2. ca l cu la t e  P via (12) 

3. compute k? v i a  (14) 

4 .  ca lcu la t e  J ( Q )  via (22) 

5. modify Q i n  d i rec t ion  of l a r g e r  J ( Q )  

6 .  r e tu rn  t o  2 
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Numerical Results 

Consider the Duffing equation with damping, viz., 

\ 

irl = x2 
ir2 = -€1x2 - xl+ €2x1 3 

and the quadratic form Liapunov function 

( 24) I . 
I 

whose time derivative with respect to ( 2 4 )  is 

i7 = - [ 2p 1 2 1  x +(2p22+ 2e1p12 - 2p 11 )x 1 x 2 +(2€1p22 - 2p12)x;] 

Thus, the following relationships exist: 

P = (  p11 

p12 p22 

Q = (2p= 
p22 + %P12 - p11 1 

p22 + - p11 2e lP2 2 - 2p12 



Application of the Sylvester criterion for positive definiteness 
of Q and P yields the parameter restrictions (for = 1): 

L 

- 5  9 P12>0 p11 P22) <2(>+- P22) (G-- p12 12 p12 

This system has three equilibrium points, viz., 

the first being stable and the others unstable. 
not expect the domain of attraction to exceed 
and it is reasonable to inquire whether (20) is satisfied in 
D, where 

Thus, ofp2would 
1x11 = € 5  

Hence, the question is what is K2 such that 

3 
W = - - = < K 2  f x  E2X1 in D 

' l X "  &+ x3 

and the solution is 
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Thus, the estimate of the domain of attraction will be larger 
than the circle lIx112 = if 

hmin(g) > K2 = 
2AmaX(P) 

( 3 4 )  

or if 

2 > 4  
a + @ +  (a + p) + 4 ( 1  - a@) 

B - J ( B  - 2f + (B - a + 1) 

where = p11(~12)'~ and B = p22(~12)-~. The parameter 
restrictions (28), (29) and ( 3 5 )  are illustrated in Fig. 2. 

The allowable choice of parameters is as given in (28), 
(29) and ( 3 5 )  or Fig. 2 and the analysis in [ 1 5 ]  has shown 
that the optimal choice, using the area of 
to be R j  as criterion, 

- -  - 1  p22 
p12 p12 

9 
- = 2  p11 

which is exactly on fhe boundary of the allowable region. Note 
that the resulting V is semidefinite, i.e. , 3 = 0 on XI = 0, 
and one must use another form of the stated theorem. See [ 1 5 ] ,  
or [ 9 ] ,  p. 6 6 .  The corresponding Rjo (for €2 = 0.04) is 
shown in Fig. 3 along with the estimate obtained by using the 
energy of the undamped system as the Liapunov function. The 

( 3 5 )  

58 



! .  

I 

- P11 
p12 

5 

4 

2 

1 

1. 2. 

1. P > O  
2. q > o  

3. hmino> 1 
2 Amx (PI 

1 2 3 4 5 - p22 

PI2 

Fig. 2 Restrictions Upon Liapunov Function Parameters 
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\ 

\ 
-8 

! 
\ 

x2 k1 = x2 

\ 

- 1  

1 

Fig. 3 Comparison of Best Estimate, R Q  0 , w i t h  Energy Function 

E s t i m a t e ,  R R  , and System Tra jec to r i e s  

GO 



value of ,! is 12.5 when p12 = 4 and thus the estimate is 

< 12.5 1 2  1 z x2 Q; : 7 x1 + 5 x1x2 + 

The points of contact with 
(XI, x2) = (+5, 0) 
the actual seperatrix and considerably larger than the estimate 

0 = 0 are at the equilibrium points 
and the estimate is seen to be close to 

1 2  1 2  4 
2 1  Qa : x + 2 x2 - 0.01~~ < 6.25 

2 

obtained by using the energy of the undamped system as the 
Liapunov function. 

x1 < 25 

In Fig. 4 the optimal quadratic form estimate, R3 , is 
compared with the estimates obtained by Infante [12] for the 
system with €2 = 1. Ingwerson's procedure [20] for generating 
Liapunov functions yields the following estimates: 

4 2 

4 
x2 1 + x1x2 + 2 < 6 x1 - -  2 a1 : x1 

. 
while Infante's procedure yields 

2 
: x; 12 - 21 + 2x1x2 + x2 2 3  < 2 

R2 

(39)  

1x11 1 

Thus for this example it seems that the optimal quadratic form 
technique yields an improvement in accuracy, ease of solution, 
and ease of portrayal of the estimate of the domain of attraction. 

The numerical solution of the constrained minimum problem 
(14) is obtained by solving an unconstrained problem, viz., 
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‘2 

icl = x2 

ir2 = -xl - x2 + XI 3 

Fig .  4 Comparison of Best E s t i m a t e ,  I;z , w i t h  Estimates 
3 

Obtained by Infante ,  and System T r a j e c t o r i e s  
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I -  
I '  

I -  

L J 

where 11x1 l 2  was introduced to avoid the trivial solution 
and K1 is manipulated to agsure satisfaction,to a prescribed 
accuracy, of the constraint V(x) = 0 .  

2 

At present, we are using a new algorithm for finding the 
minimum of a very general class of functionals to solve (41). 
(Eventually it will also be used to solve C231.) This 
algorithm is being developed at Grumman by Mr. R .  MzGill based 
on work by Davidon [21]. 
McGill has the following salient characteristics: 

The algorithm being developed by 

1. It does not require numerical inversion of linear 
operators and thus is relatively free of 
dimensional limitations. 

2. It is stable with respect to convergence, i.e., 
convergence to a local minimum is guaranteed. 

3. It is efficient, i.e., convergence is quadratic 
in a neighborhood of a minimum. 

4 .  It allows a tradeoff betweer! precision and 
computing time. 

5. It requires modest storage. 

Typical computational results for €1 = 1, € 2  = 0.04 
are presented in Figs. 5 through 12. These figures show the 
boundary of fhe estimate R1 and its relationship to the 
constraint V = 0 ,  and the area contained with Q Q  . The esti- 
mate R j  is the elliptical region surrounding the origin. 
The aberrations from ellipticity are due to the plotting machine 
roucine being use6 aid sris ixt p z r t  cf O i  . 
are those with the triangle and square markings. 
ings are used to distinguish the branches corresponding to the 
positive and negative roots.of the quadratic equation (in x2) 
used to generate the loci V = 0. 
xi 

The l o r i  V = 0 
These mark- 

These markings along the 
axis indicate that the roots are complex for thuse values 



. 
of x1 and are not part of the loci V = 0. Note that when 
P11 = 4.0 ,  pi2 = 0.5, p22 = 2.0 
at its point of contact with V = a .  (This situation would be 
difficult to handle using a geometric approach such as Rodden's). 
The best computed result is about 10% off the optimal 
J(Q0) = 50n 2 157. Some convergence difficulties have been 
observed as the boundary 2 of Fig. 2 is approached. This 
phenomenon has not yet been investigated. 

$ = 0 appears to have a cusp 

Conclusions 

Results obtained by investigators who pursued estimation 
of the domain of attraction via Zubov's technique, and the 
preliminary results presented here indicate that estimation 
of the domain of attraction for quasi linear dynamic systems 
via "optimal" quadratic form Liapunov functions, as formulated 
here, is feasible. This procedure , in conjunction with McGill' s 
algorithm, offers the advantages of: 1) readily leading to an 
efficient algorithm for estimating the domain of attraction 
which is relatively insensitive to system dimension; and 2) 
providing an estimate which is easy to visualize, i.e., an 
ellipsoid. 
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In  the  s tudy  of t r a j e c t o r y  opt imiza t ion  by c lass ical  ca l cu lus  of 

v a r i a t i o n s  techniques,  one normally encounters c e r t a i n  Euler-Lagrange 

equat ions  involv ing  t h e  control ang le s  used i n  t h e  formulat ion of t h e  

problem. 

ang le s  (or ,  u sua l ly ,  t h e  tangents  of t h e  ang le s )  i n  terms of t h e  

Lagrange m u l t i p l i e r s ;  and these  s o l u t i o n s  can be  used t o  e l imina te  t h e  

c o n t r o l  angles  from t h e  Euler-Lagrange equat ions  and thus  l eave  a sys-  

In  some cases, t h e s e  equat ions  lead  t o  a s o l u t i o n  f o r  t h e  

t e m  of d i f f e r e n t i a l  equat ions  i n  t h e  s t a t e  v a r i a b l e s  and t h e  Lagrange 

m u l t i p l i e r s .  This  is genera l ly  d e s i r a b l e ,  However, it seems t h a t  t h e  

process  is more r e a d i l y  c a r r i e d  o u t  i n  some coord ina te  systems than 

o t h e r s  and, i n  fac t ,  v i r t u a l l y  impossible  i n  some systems,  

one happens t o  be us ing  a coord ina te  system i n  which t h e  l a t t e r  is t r u e ,  

it would be  convenient t o  t ransform t o  another  coord ina te  system i n  

Thus, i f  

which t h e  problem was n o t  p re sen t ,  f i n d  t h e  des i r ed  s o l u t i o n s ,  and then  

t ransform back t o  t h e  o r i g i n a l  system. This  involves  t ransforming  t h e  

s t a t e  v a r i a b l e s  and t h e i r  corresponding Lagrange m u l t i p l i e r s  from one 

system t o  another .  In  t h i s  d i scuss ion ,  t h e  technique f o r  a gene ra l  

t ransformation of t h i s  type is given and then  appl ied  t o  a s p e c i f i c  

problem involving three-dimensional t r a j e c t o r y  opt imiza t ion  i n  a plumb- 

l i n e  coord ina te  system (wi th  s t a t e  v a r i a b l e s  x ,  y ,  z ,  x, y ,  z, and 
. . .  

c o n t r o l  angles  X and X l1 and i n  a s p h e r i c a l  coord ina te  
p i t c h  Y a w  

1 

A e r o b a l l i s t i c s  I n t e r n a l  Note No. 3-61, May 1 0 ,  1961 
W. E. M i n e r ,  "Methods f o r  Tra j ec to ry  Computation", NASA-MSFC, 



system (wi th  s ta te  v a r i a b l e s  r, 4 ,  e , v , Y ,  6 and c o n t r o l  a n q l e s  

a and 8 12. In  t h e  f o r n e r  ? y s t e ? ,  t an  X and t a n  X a r e  

r e a d i l y  so lved  f o r  whereas t h e  same is n o t  t r u e  i n  t h e  l a t t e r  systern. 
p i t c h  VCl'd 

However, t h e  d e s i r e d  r e s u l t  is ob ta ined  for  t h e  l a t t e r  sys tem by a p p l i -  

cat ion of t h e  rnethod j u s t  o u t l i n e d .  

Consider  t h e  e q u a t i o n s  of motion which s i m u l a t e  v e h i c l e  f l i p h t  

i ~ .  t h r e e  dimensions,  t h rough  a vacuum, f o r  a n o n - r o t a t i n g  s p h e r i c a l  

r e f e r e n c e  body. Thrus t  and weight f l o w  a r e  assumed c o n s t a n t  and thrust 

and g r a v i t y  are t h e  o n l y  two f o r c e s  a c t i n g  on t h e  v e h i c l e .  These 

e q u a t i o n s ,  i n  f l i g h t  pa th  c o o r d i n a t e s ,  are  : 

2 

wi th  End P o i n t s  i n  F l i g h t  Path Coordinates" ,  3ouglas  A i r c r a f t  
Company Space and Yissile Systems Divis ion  'lernorandum 

D. H. Young, "Three Dimensional Vacuum T r a j e c t o r y  Opt imiza t ion  

V :  

Y :  

6: 

a: 

6 :  

Symbols from t h e  above a r e  a s  follows: 

t o t a l  missile v e l o c i t y ,  d i r e c t e d  a l o n g  t h e  f l i q h t  pa th  

v e h i c l e  e l e v a t i o n  f l i g h t  path ang le  ( a n g l e  betveen t h e  
p r o j e c t i o n  of t h e  v e l o c i t y  v e c t o r  on t h e  l o c a l  t a n g e n t  
p l ane  and t h e  v e l o c i t y  v e c t o r  

v e h i c l e  azimuth f l i g h t  9 t h  a n q l e  ( ang le  between n o r t h  
and t h e  p r o j e c t i o n  of t h e  v e l o c i t y  v e c t o r  on t h e  local 
t a n g e n t  plane-  p o s i t i v e ,  c lockwise from n o r t h  ) 

in -p lane  a n g l e  of a t t a c k  ( a n g l e  between t h e  v e l o c i t y  
vector  and t h e  p r o j e c t i o n  of t h e  t h r u s t  v e c t o r  i n  t h e  
v-n plane- p o s i t i v e ,  counterc lockwise  from t h e  v e l o c i t y  
v e c t o r  1 

out-of -p lane  a n g l e  of q t t a c k  ( ang le  between t h e  ve1ocit;r 

v-s plane-  p o s i t i v e ,  c lockwise  from t h e  v e l o c i t y  v e c t o r )  
V C L L V L  QI.U - - >  AL- ...I ---:,=-+inn ,>A ---- - . nf the t h r u s t  v e c t o r  i n  t h e  
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* - t v cos  Y s i n  6 T t a n  0 6 -  
Mv cos y ( *&an2 t t an2  B t 1) r cot 4 

r = v s i n  Y 

. 
4 = (v  cos Y cos 6 )/r 

8 = (-v cos Y s i n  6) / r  cos  4 

where r ,  4 0 are t h e  u s u a l  s p h e r i c a l  c o o r d i n a t e s  and v, Y , 6 , 
a and 5 are as p r e v i o u s l y  d e f i n e d .  

In  o r d e r  t o  use c l a s s i c a l  c a l c u l u s  of v a r i a t i o n s  t e c h n i q u e s ,  

form : 

r 1 

J +  B v COS Y s i n  6 t T t a n  

2 r c o t  0 t t a n  B t 1) Mv cos y ( * J t a n 2  a 
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Ar Cv s i n  y ] t A 4  [ (v  cos y c o s  6 )/r] t 

a. C(-v cos y s i n  6 )/r cos + 3 

I t  is then necessary t h a t  an extremizinp t r a j e c t o r y  s a t k f y  

a L/  a v  A =  
V 

and s i m i l a r l y  for y 8 ,r, 4 and 0 ; and also, 

a long  with c e r t a i n  end cond i t ions  and t r a n s v e r s a l i t y  cond i t ions  which 

are n o t  p e r t i n e n t  t o  t h i s  discussion.  The l a t t e r  two equat ions y i e l d  

t a n  a = ( t an2  B + 1) Ay 

v A V  + A 6  ( t an  8 /cos Y )  

( t an2  a + 11x6 
t a n  B = 

( AY tan a t v Av) cos y 

It  would now be d a s i r a b l e  t o  s o l v e  t h e s e  equat ions f o r  a and 6 

so as t o  e l i m i n a t e  a and 

Euler-Lagrange equat ions.  However, t h i s  is p r e c i s e l y  t h e  s i t u a t i o n  

mentioned earlier;  namely 

obtained. 

6 from t h e  equat ions of motion and t h e  

t h e  desired s o l u t i o n s  cannot be r e a d i l y  
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;?ow, t h e  same o r i g i n a l  problem can be cons ide red  i n  a plumbline 

coord ina te  system wi th  s t a t e  v a r i a b l e s  x, y ,  z ,  x = 1, y = m, z = n. 

The r e l a t i o n s  among t h e  v a r i o u s  s t a t e  v a r i a b l e s  i n  t h i s  and t h e  

prev ious  s y s  tern a r e  given by : 

x = r cos 4 cos e 

y = r cos 4 s i n  e 

z r s i n  4 

1. = vCsin y cos  4 cos e - s i n  4 cos e cos y cos 6 t 

s i n  e cos Y s i n  6 3 

m = vCsin Y cos 6 s i n  0 - cos 8 cos y sin 6 - 
s i n  4 s i n  8 cos y cos 6 1  

n = v[s in  Y s i n  4 t cos 4 c o s  y cos 6 3 

and, i n v e r s e l y ,  

2 2 2 1 / 2  
v = (1 t m  t n )  

r = ( x 2 t y 2 t z )  2 1 / 2  

P 1 

Z 1 4 = s i n  
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. 

The equations of motion i n  t h e  present coordinate system are: 

. -F l J x  - 1 =  - 
M s i n  X cos X (x2 t y2 t 2213/2 

P Y . 
F - VY m =  - 

M COS X COS X (x2 y2 t 2 2 1 3/2 
P Y . F U Z  n =  

M s i n  X (x2 t y 2  t z 2 1 3/2 
Y 

x = l  

y = m  

z = n. 
. 

Then, f o r  

2 3/2 
IJX 

I 

-F 

(x2 t y2 t 2 1 
Y 

cos xp cos x (x2 t y2 t 2 2 1 3/2J 
Y 

s i n  xy (x2 t v2 t 2 2 1 3/2A 

t o x l t a  m t  aZn Y 

t h e  Euler-Lagrange equations a re  : 
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2 2 2 5 / 2  (x t y  +z 1 2 2 2 3 / 2  (x t y  +z ) 

2 2 2 3 / 2  (x t y  +z 1 2 2 2 5 /2  (x t y  +z ) 

a t  - t 0 ,  s i n  X cos X = 0 a x  Y P Y -- - 0 cos x, cos x 
P 

-, 

cos X s i n  X + 
P Y - a m  ? Y 

= o1 s i n  X s i n  X 

a cos x = 0 
n Y 

a l o n g  with t h e  e q u a t i o n s  of motion. 

are analogous t o  t h o s e  ob ta ined  for t h e  o t h e r  c o o r d i n a t e  sys tem from 

aL/aa = 0 and a L / a s  = 0. They g i v e :  

The l a t t e r  two e q u a t i o n s  above 

. 
2 2 ) 1 / 2  tan X, = - 0  l / a m  t a n X  Y = a n / ( a l  t a m  

S u b s t i t u t i n g  i n t o  t h e  e q u a t i o n s  of motion g i v e s :  
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1 -  

8 

. 
1 =  

. 
Om m =  

n =  
?I( u, 2 t am 2 + un 2)1/2 

A. 

x = l  y = m  

(x 2 +y 2 t z  2 1 3/2 

uz - 
2 2 3/2 (x'+y tz 

z = n  

Thus, t h e  l a t t e r  coordinate  system provides  an example of a 

s i t u a t i o n  i n  which t h e  d e s i r a b l e  s o l u t i o n  for, and e l i m i n a t i o n  of,  t h e  

c o n t r o l  angles is r e a d i l y  obtained. If a t ransformation from t h e  

latter coord ina te  system t o  the  former coord ina te  system can now be 

e f f e c t e d ,  a similar set  of solut ions for a and B should be immed- 

i a t e l y  ob ta inab le .  

Suppose, then, t h a t  t h e  inmediate example is set a s i d e  momentar- 

i l y  i n  o r d e r  t h a t  a t ransformation technique can be discussed.  This  

technique can then,  hopeful ly ,  be app l i ed  t o  t h e  example. Suppose a 

func t ion  L is given i n  a c e r t a i n  coord ina te  s y s t e n  with v a r i a b l e s  xi 

(i = 1, 2, ... , n )  and Lagrange m u l t i p l i e r s  Ai (i = 1, 2,  ... , n )  

as : 

.. \ L = A r i < x ,  xl, A2, ... , .h, 
- 

Suppose, f u r t h e r ,  t h a t  a function L is given i n  another  coord ina te  

system with v a r i a b l e s  

p l i e r s  

hi (i = 1, 2, ... , n )  and Lagrange mult i -  

aigi(t ,  hl, h2, ... , hn).  
- 

ai (i = 1, 2, ... , n ) ,  L = 
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L l e a d s  t o  t h e  E u l e r  e q u a t i o n s :  

* a fi 
x j  = - x i  / a  x j  ( j  = 1, ... , n )  

.. 
and L to: 

* a g i  
- - 5  / ahj  ( j  = 1, ... , n )  

i 0 -  
j 

(where i n  both c a s e s ,  t h e  summation convent ion a p p l i e s  t o  t h e  

repea ted  s u b - s c r i p t  i 1. 

Now, suppose t h a t  a t r ans fo rma t ion  r e l a t i o n s h i p  is given f o r  t h e  

v a r i a b l e s  i n  t h e  two sys t ems ,  s ay :  

or, i n v e r s e l y :  

Then, f o r  

and 

t h e  func t ion  L = xifi t r a n s f o r m s  i n t o  
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I 

I 

The corresponding i n v e r s e  m u l t i p l i e r  t r ans fo rma t ion  is: 

I t  can be demonstrated t h a t ,  under t h e s e  t r ans fo rma t ions ,  t h e  

Euler  equat ions t ransform accordingly.  

g i ( t ,  hl, h2, ... , h n )  a r e  properly r e l a t e d  t o  t h e  f u n c t i o n s  

f , ( t ,  xl, x2, ... , xn) by t h e  above t ransformation,  t h e  Lagrange 

m u l t i p l i e r s  are transformed a s  shown. 

Thus, i f  t h e  f u n c t i o n s  

1 

In t h e  example under cons ide ra t ion ,  a l l  func t ions  and t r a n s f o r -  

mation r e l a t i o n s h i p s  are properly de f ined  for t h i s  a p p l i c a t i o n .  Thus, 
i *  

with corresponding equat ions for m' a n '  0 x' u Y and az, where v, 

Y , 6 , r , 4 , e are now expressed i n  terns of x, y ,  z, 1, m ,  n by 

t h e  t r a n s  format i on equa t ions  . 
IYOW, r;ne vdri"Ua t,ar. : L G ~  &ii-.-zti*:=c I?.-:=>r~d I n  +hosta ?recadino 

equa t ions  must be found i n  order t o  give t h e  t r ans fo rma t ion  equa t ions  

e x p l i c i t l y .  

formation equa t ions  with r e spec t  t o  t h e  appropr i a t e  s ta te  v a r i a b l e s  and 

then s o l v i n g  t h e  r e s u l t i n g  a l g e b r a i c  system i n  t h e  p a r t i a l  d e r i v a t i v e s .  

Following t h i s  rather lengthy process w i l l  f i n a l l y  y i e l d :  

These p a r t i a l s  can be found by d i f f e r e n t i a t i n g  t h e  t r ans -  

87 



v = s i n  e cos Y s i n  6 t cos 4 cos 0 s i n  Y - s i n  4 cos e cos Y cos 6 
1 

Y = l/vCcos $cos  e c o s  Y t s i n  @ c o s  e s iny  cos - 
s i n  e s i n ~  s ins  1 

6 = -- 1 [ s i n  ecos 6 t s i n   COS e s i n  6 3 
1 v cos Y 

v = cos 4 s i n  0 s i n  Y - cos e cos Y s i n  6 - s i n  0 s i n  0 cos Y cos 6 m 

= l /v[cos 8 s i n  Y s i n  6 t cos 0 s i n  0 cos Y t 'm 
s i n  O s i n  e s i n  Y cos 6 I 

6 =  [ s i n  o s i n  8 s i n  6 - cos e cos 6 3 m v cos Y 

v = s i n  @ s i n  Y t cos + c o s  Y cos 6 n 

y n  = 

6 = -  [cos Osin 6 3 

l / v [ s in  0 cos Y - cos + s i n  Y cos 6 I 

v cos y n 

Fur the r  computation gives  : 

. .  
Now,  t h e  E u l e r  equat ions f o r  t h e  plumbline s y s t e m  f o r  1, m ,  and 

e l i m i n a t e d )  may be transformed 
e 

n ( i n  t h e  form with t a n  X and t an  X 
P Y 

i n t o  t h e  s p h e r i c a l  s y s t e m  t o  y i e l d  an a l g e b r a i c  system of t h r e e  

equa t ions  i n  v, Y , and 6 , 

f o r  v,  Y , and 6 t o  give:  

. .  
This system may be solved a l g e b r a i c a l l y  

e *  e . 



. 
a 

v =  F - g s i n  Y 

M (  2 + 1 2 2  y / v  t X 2 6 / V 2  cos2 Y 1 1/2 
V 

. F XY + 
Y =  

Mv( A t  + A 2 2  6 / v  t X 2 & / v  2 cos  2 y 1 1/2 

F A6 t L 
Mv cos Y ( A ?  t 26 /v* t h$/V2 cos2 Y 9 2  

v cos Ysin 6 

r c o t  @ 

These represent  t h e  Euler equat ions f o r  t h e  problem as expressed i n  t h e  

s p h e r i c a l  coordinate  system and with t h e  c o n t r o l  angles  0. and e l i m -  

ina ted .  From them, or from d i r e c t  t ransformation,  

This i l lustrates t h e  t ransformation of Lagrange m u l t i p l i e r s  from 

one coord ina te  system t o  another and t h e  accompanying t ransformation 

of  t h e  Euler  equations.  A p a r t i c u l a r  value of  such a transformation 

is t h a t  o f  ob ta in ing  expressions f o r  t h e  c o n t r o l  angles  i n  terms o f  

t h e  Lagrange m u l t i p l i e r s  i n  a coordinate system i n  which such ex- 

press ions  could n o t  r e a d i l y  be obtained i n  a d i r e c t  fashion,  as noted 

i n  t h e  above, Other motivations f o r  c a r r y i n g  o u t  such a t ransformation 



. 
may also e x i s t .  For  examplb, i n i t i a l  Lagrange m u l t i p l i e r  va lues  f o r  

one system may be used t o  give those  f o r  another .  The s i m p l i c i t y  and 

workabi l i ty  of such a t ransformation a i d  i n  making it a very va luab le  

t o o l  i n  t r a j e c t o r y  op t imiza t ion  problems o f  t h e  type  i l l u s t r a t e d .  



S t a b i l i t y  Criteria f o r  n-th Order, Homogeneous 

i. Linear  D i f f e r e n t i a l  Equations 

ti. E. F. I n f a n t e  

Center  For Dynamical Systems, Brown Unive r s i ty  \ 
~ . 

1. In t roduc t ion  

This  n o t e  is conceriled with  t h e  homogeneous d i f f e r e n t i a l  equa t ion  

. 

where t h e  p , ( t )  are real cont inuous  f u n c t i o n s .  It  is desired t o  de te rmine  

a p p r o p r i a t e  cr i ter ia  f o r  t h e  s t a b i l i t y  o f  t h e  o r i g i n ,  c r i t e r i a  dependent on 

t h e  behavior  o f  t h e  f u n c t i o n s  p . ( t )  but  no t  o f  t h e i r  d e r i v a t i v e s .  
1 

This  problem has  been previously s t u d i e d  by S t a r z i n s k i  [1,2,3] for 

p a r t i c u l a r  forms o f  t h i s  equat ion up t o  t h e  f o u r t h  o r d e r ,  and by Razumichin 

[4]  f o r  t h e  g e n e r a l  ma t r ix  equation 2 = A(t)x.  The approach of t h e s e  

a u t h o r s  has  been t o  use t h e  d i r e c t  method of  Liapunov, using a cons t an t  quad- 

r a t i c  Liapunov func t ion  V(x) = x'3x which is generated by determining t h e  

n(n+1)/2 cons t an t  elements of t h e  symmetric m a t r i x  B. The determinat ion 

of a l l  t h e s e  elements r e q u i r e s  very heavy a l g e b r a i c  computations,  computa- 

t i o n s  which are completely unreasonable f o r  n > 2. Recently,  G h i z z e t t i  

[ 5 , 6 ]  has obtained simple s t a b i l i t y  c r i te r ia  f o r  (1.1) by using some appro- 

p r i a t e  majorat ion formulae f o r  a l l  t h e  i n t e g r a l s  o f  t h i s  equat ion.  The 

-4. ' This r e s e a r c h  was supported by t h e  Nat ional  Aeronautics and Space 
Adminis t ra t ion under Grant No. NAS8-11264. 

On l eave  of absence from Department of Mechanical Engineering, 
Un ive r s i ty  of Texas. 



p a r t i c u l a r l y  a t t r a c t i v e  a s p e c t  o f  t h e s e  c r i t e r i a  is t h a t  t h e y  depend on only  

n c o n s t a n t  parameters which locate a fami ly  of h y p e r e l l i p s o i d s  i n  t h e  n- 

d imens iona l  space  of t h e  If t h e  curve  p a r a m e t r i c a l l y  r e p r e s e n t e d  

by t h e  p i ( t )  i s  e n t i r e l y  con ta ined  w i t h i n  one of t h e s e - h y p e r e l l i p s o i d s ,  

t h e n  (1.1) is a s y m p t o t i c a l l y  s t a b l e .  

p i( t )  . 

In  52 of  t h i s  n o t e  t h e  second method of Liapunov is used t o  ob- 

t a i n  s t a b i l i t y  c r i te r ia  for (1.1) t h a t  depend on on ly  n pa rame te r s  which 

de termine  a fami ly  of e l l i p t i c  p a r a b o l o i d s  i n  t h e  n-dimensional  space  p . ( t > .  

I t  can  be shown t h a t  t h e s e  e l l i p t i c  p a r a b o l o i d s  comple te ly  c o n t a i n  t h e  hyper-  

e l l i p s o i d s  of G h i z z e t t i .  I n  53 a p r a c t i c a l  t echn ique  f o r  t h e  a p p l i c a t i o n  of 

t h e  s t a b i l i t y  c r i t e r i a  o b t a i n e d  is d i s c u s s e d  and i s  a p p l i e d  i n  t h e  l a s t  sec- 

1 

t i o n  t o  two examples. The s t a b i l i t y  c o n d i t i o n s  p r e s e n t e d  i n  t h i s  n o t e  are  

no t  necessa ry .  Indeed,  t h e y  are probably  no t  t h e  b e s t  p o s s i b l e  c o n d i t i o n s  

o b t a i n a b l e  from a q u a d r a t i c  Liapunov f u n c t i o n .  The t e c h n i q u e  p r e s e n t e d  i n  

t h i s  n o t e  was dev i sed  w i t h  p a r t i c u l a r  emphasis  on ease of c o m p u t a b i l i t y  of 

some s imple  c r i t e r i a .  

2.  S t a b i l i t y  Cri ter ia  

Consider  Eq. (1.1) r e w r i t t e n  i n  s t a t e - s p a c e  c o o r d i n a t e s  as 

ic = x  1 2  



It is assumed t h a t  t h e  p . ( t > ,  

t h e  Routh-liurwitz i n e q u a l i t i e s  [ 7 ] .  L e t  t h e  n r e a l  numbers a assumed 

t o  s a t i s f y  t h e  Routh-Hurwitz i n e q u a l i t i e s ,  be a s s o c i a t e d  t o  ( 2 . 1 ) ,  which is 

rewr i t ten  as 

rea l  cont inuous  f u n c t i o n s  of t i n e ,  s a t i s f y  
1 

i' 

. . .  . 

where 

9 

i = x  1 2  

(2 .2 )  

ic = -(p,(t) - an)xl - ... - ( p l ( t )  - a j x  - a x - ... - a x 
n 1 n n l  1 n '  

For  economy of n o t a t i o n ,  (2 .2)  is r e w r i t t e n  as 

and where ni E p i ( t )  - 0.. 
1 



For t h e  determinat ion of  t h e  s t a b i l i t y  of  t h e  o r i g i n  of  ( 2 . 3 1 ,  

cons ide r  t h e  Liapunov func t ion  V(x) = x ' B x ,  B' = B = ( n . . ) ,  6. .  = cons tan t .  

Let bn denote t h e  n-th column of t h e  matrix E ,  and 

1 7  1? 

The d e r i v a t i v e  V of  t h e  Liapunov func t ion  V i n  terms of ( 2 . 3 )  is  given 

by 

= x'(A'B t BA)x - xl(U'(t)B t BU(t))x, (2.6) 

or  

-V = X'CX t x ' ( u b '  t b u ' ) x ,  n n (2 .7 )  

where A ' B  t BA =-C. If it were p o s s i b l e  t o  determine a ma t r ix  B ,  p o s i t i v e  

d e f i n i t e ,  such t h a t  -V is p o s i t i v e  d e f i n i t e  €or a l l  t 2 0 ,  t hen  asymptot ic  

s t a b i l i t y  of  t h e  o r i g i n  of (2 .1)  w i l l  have been determined by t h e  w e l l  known 

theorem o f  Liapunov C81. 

lemma : 

For t h i s  purpose,  cons ide r  t h e  fo l lowing  simple 

Lemma 2 . 1 :  Given t h e  cons t an t  ma t r ix  A ,  de f ined  - by (2.41, - f o r  -- 
any cons tan t  p o s i t i v e  s e m i d e f i n i t e  d i agona l  ma t r ix  C f 0 the equa t ion  

A ' B  + BA = -C -- has a unique s o l u t i o n  B ,  B c i s  p o s i t i v e  d e f i n i t e .  
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i 
I .  

Proof.  The  matr ix  B ,  obviously symmetric, i s  unique s i n c e  a l l  t h e  eigen- 

va lues  of A have nega t ive  rea l  p a r t s .  Now, l e t  V(x ) = xbB%< 0 for 

some x # 0 ,  and d e f i n e  cS0 as the t r a j e c t o r y  of i< = Ax i s s u i n g  from 

x a t  t = 0. Along 6 w e  t hen  have V(x) s V(xo) < 0. a u t  6 approaches 

t h e  o r i g i n  and V ( 0 )  = 0. Hence V(x) 2 0. S i m i l a r l y ,  l e t  V(x,) = 0,  

x # 0 ,  and 61 t h e  t r a j e c t o r y  emanating from x a t  to. Since t h i s  

t r a j e c t o r y  approaches t h e  o r i g i n ,  i t  must l i e  on t h e  manifold X ' C X  = 0. 

But t h i s  is c l e a r l y  impossible with C diagonal  and A i n  t h e  form ( 2 . 4 ) .  

Hence B is p o s i t i v e  d e f i n i t e .  

0 

0 

0 

1 1 

Hence, l e t  t h e  matrix B be generated by t h e  diagonal  matr ix  

c =  
CU 

0 

C a  

where C' and Ca are cons t an t  nonsingular p o s i t i v e  d e f i n i t e  diagonal  

squa re  matrices, and where t h e  ze ro  element i n  t h e  d i agona l  is l c c a t e d  i n  t h e  

i,i p o s i t i o n .  On t h e  b a s i s  of t h e  above lemma V(x) = x'Bx will be pos i -  

t i v e  d e f i n i t e .  I n  t h i s  ca se ,  Eq. ( 2 . 7 )  t hen  becomes 

u L'+ b u y  
bU u b n  n 'ni+'n+l-i n 

u u' u u '  U u b + bnu n 

b a'  +Bniua'\ x 
"V = x'  1' 0 \x + x ' l  "n+l-i  b u i 8 n i ~ U '  n '*ninn+l-i "n+l- i  n 

a u '  a. u' 11 ba uab t '+  b'u'' I I I CR I t u  bn + bnu 
'ni+'n+l-i n n 
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Assume Bni > 0 (it is always p o s s i b l e  t o  f i n d  a Bni > 0, namely nn 1 

and c o n s i d e r  t h e  r e g u l a r  t r a n s f o r m a t i o n  x = Sy, 

s =  

I O 0  

II’ 
b;’ bn 

*n i ’ni 
1 - -  - -  

0’  0 I 

3 (2.1.7) 

where t h e  u n i t  e lement  i s  i n  t h e  i,i p o s i t i o n  and t h e  I are  u n i t  matrices 

of a p p r o p r i a t e  dimensions.  If t h i s  t r a n s f o r m a t i o n  i s  a p p l i e d  t o  Eq .  ( 2 . 9 ) ,  

one o b t a i n s  

-v = y ‘  

or 

.U bU 0 \ 
CU 0 ’niU -‘ntl-i n 

bU ’ 2 B n i r l n t l - i  Bn iU - ‘ n t l - i  n Y 
II’ U’ 

“ n t l - i  n 

B . u  II - b‘ 0 
0’ n i  ‘ n t l - i  n 

(2.11) 

bU 0 U B . u  -rl n i  n t l - i  n CU 

Y 
II’ 

bU‘ ’ni “ n t  1- i BniU - ‘ n t l - i  n “ n t l - i  n 
U ’  

b‘ C‘ 
II B . u  -rl n i  n t l - i  n 0 ’  

(2 .12 )  



It now becomes necessary t o  determine under what condi t ions  (2.12) 

is p o s i t i v e  d e f i n i t e .  For t h i s  purpose, cons ider  t h e  second t ransformation.  

y = Tz, 

c' 0 0 

* i  0'  0 cL 
-v = 2' 0' w 0' 

4 

z 

(2.13) 

where t h e  u n i t  element is i n  t h e  i,i p o s i t i o n , t h e  I are u n i t  matrices 

"n+l-i n of  a p p r o p r i a t e  dimensions and vu = Bniu - 
T h i s  transformation is obviously regular and when applied to Eq. (2.12) yields 

b a  a 
bU v i =  BniU - U 

"n+l-i n' 

(2.14) 

where 

(2.15) 
b '1 !L-l R 

" n t l - i  n - (Bn iUR - " n + l - i  ba) 'C n (Bniu - 

Since  (2.14) is  diagonal ,  it can then be concluded t h a t  

d e f i n i t e  i f  w L 6 > 0. 

V w i l l  be negat ive 

On t h e  b a s i s  of  what has  been s a i d  above, it is then p o s s i b l e  t o  

s ta te  : 

Theorem 2.1: Given t h e  homogeneous d i f f e r e n t i a l  equat ion -- 
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(2 .16 )  

wi th  p . ( t )  r e a l  cont inuous  f u n c t i o n s  - for t ? 0 ,  associate -- w i t h  t h i s  

e q u a t i o n  the n rea l  c o n s t a n t s  al, ..., a s a t i s f y i n g  - t h e  Routh-Hurwitz 

i n e q u a l i t i e s ,  and d e f i n e  

- 1 - 
n - 

= p i ( t )  - a,. L e t  t h e  m a t r i x  B = ( B . . )  be 
11 - 1 --- “i 

t h e  s o l u t i o n  of t h e  m a t r i x  e q u a t i o n  - --- 

’ 
c‘ 

A ‘ B  t BA = - 0 , 
CL 

(2.17) 

where 

z e r o  element  i n  t h e  d i a g o n a l  a p p e a r s  -- i n  t h e  

C‘, C‘ - a r e  c o n s t a n t ,  p o s i t i v e  d e f i n i t e  d i a g o n a l  matrices, and t h e  

i,i p o s i t i o n ;  and where -- -- 

I A =  

0 1  
0 0  

0 0  

I, -an -“n-l  

Le t  bn denote  t h e  n- th  column - -- 

0 
1 

0 

n-2 -a 

of B - 

. o  0 

. o  0 

. .  . .  

. o  1 

and d e f i n e  -- 

I *  (2 .18)  

(2 .19)  



Then, i f  f o r  any 6 > 0 and any i = 1,. ..,n - L- 

-1 
b‘) + U 

2Bni“n+l- i  - (Bniu - “n+l-i  bU)lCU n (Bniu - “n+l - i  n 
U 

(2.20) 

11 b ) L 6  
a 

“n+l-i  n bll)lC1l ( B  .u - R 
“n+l-i  n n i  - (BniU - 

f o r  a l l  t 2 0, t h e  n u l l  sclution of (2 .16)  - is asymptot ica l ly  s t a b l e .  -- -- 
This theorem is not as genera l  as it would have been p o s s i b l e  

t o  state,  y e t  it is s t i l l  t o o  general  for p r a c t i c a l  a p p l i c a t i o n s  because 

of  t h e  g e n e r a l i t y  of t h e  matrices C‘ and C . Before r e s t r i c t i n g  t h e  

theorem, it is d e s i r a b l e  t o  make some remarks concerning t h e  r e s u l t s  so 

far obtained.  

a 

F i r s t  of a l l  w e  wish t o  point  ou t  t h a t  E q .  ( 2 . 2 0 )  r e p r e s e n t s ,  

i n  t h e  parameter space of t h e  q ’ s ,  an e l l i p t i c  paraboloid.  This can be 

easi ly  seen by in t roducing  t h e  t ransformation of coord ina tes  f o r  t h e  para- 

meter space given by 

This  t ransformation is  obviously regular  i f  6 > 0 ,  which as was pre- 

v ious ly  pointed o u t ,  is no r e s t r i c t i o n .  

be come s 

n i  

In  t h e  new coord ina tes ,  E q .  (2.20) 
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i cu 

( 2 . 2 2 )  

T h i s  is e v i d e n t l y  t h e  e q u a t i o n  of a n  e l l i p t i c  p a r a b o l o i d .  

assumed,  t h e  domain d e f i n e d  i n  t h e  p a r a m e t e r  s p a c e  by ( 2 . 2 2 ) ,  hance  by ( 2 . 2 0 ) -  

is nonempty. 

If Bni > 0 ,  a s  

S e c o n d l y ,  it is e v i d e n t  t h a t ,  for a n y  Cu and C' s a t i s f y i n g  

t h e  c o n d i t i o n s  of Theorem 2 . 1 ,  t h e  domain of t h e  

by any of the ( 2 . 2 0 )  is s t r i c t l y  c o n t a i n e d  w i t h i n  t h e  domain where t h e  

s a t i s f y  t h e  Routh-Hurwitz  i n e q u a l i t i e s .  On t h e  o t h e r  h a n d ,  it is e a s i l y  shown 

t h a t  e v e r y  p o i n t  of t h e  domain of t h e  p a r a m e t e r  s p a c e  where t h e  sa t i s -  

f y  t h e  Routh-Hurwitz i n e q u a l i t i e s  i s  c o n t a i n e d  i n  a t  least  one  of t h e  domains  

d e f i n e d  by ( 2 . 2 0 ) .  T o  p r o v e  t h i s ,  l e t  p i ( t )  p i  = c o n s t a n t s .  S i n c e  t h e  

'i 

numbers a t h e m s e l v e s  s a t i s f y i n g  t h e s e  i n e q u a l i t i e s ,  and  s u c h  t h a t  

p a r a m e t e r  s p a c e  d e f i n e d  

p i ( t )  

p i ( t )  

- 

- 
s a t i s f y  t h e  Routh-Hurwitz  i n e q u a l i t i e s ,  it is p o s s i b l e  t o  select  t h e  .n  

i' - - 
- a  E > 0 f o r  some j and  P ~ ~ ~ - ~  -a ntl-i = 0 fo r  'n+l- j  = ' n t l - j  n t l - j  

a l l  i # j .  Under t h e s e  c o n d i t i o n s  E q .  ( 2 . 2 0 )  r e d u c e s  t o  

But f o r  a n y  E > 0 s u f f i c i e n t l y  small, a 6 > 0 can b e  found s u c h  t h a t  ( 2 . 2 3 )  

is s a t i s f i e d .  Hence t h e  remark .  

F i n a l l y ,  it is n o t e d  t h a t  t h e  c o n t i n u i t y  c o n d i t i o n  imposed by 

Theorem 2 . 1  on t h e  p i ( t )  imply  t h a t  E q .  ( 2 . 1 6 )  d o e s  n o t  h a v e  a f i n i t e  
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I -  

escape t i n e .  It is t h e r e f o r e  possible  on t h e  S a s i s  of t h i s  remark and 

t h e  two p rev ious  ones t o  state:  

Coro l l a ry  2.1:  Given t h e  d i f f e r e n t i a l  equa t ion  (2.16) - with -- 
p . ( t )  r e a l  continuous func t ions  f o r  t 2 0 ,  i f  t h e r e  e x i s t  a T > 0 - such ---- - - 1 

t h a t  f o r  a l l  t 1 T ( 2 . 2 0 )  is s a t i s f i e d  f o r  some 6 > 0 -- and some i = 1,. . . ,n ,  - -- --- 
t hen  t h e  n u l l  s o l u t i o n  - o f  (2 .16)  - is asympto t i ca l ly  s t a b l e .  --- 

Coro l l a ry  2.2:  If ,  ir? Eq. (2.161, t h e  p . ( t )  -- are rea l  cont inuous - -- - 1  
- - 

s a t i s f y  t h e  f u n c t i o n s  - f o r  t 2 0 - and l i m  p i ( t )  = pi  , -- where t h e  P i  - 
t + m  

Routh-Eurwitz i n e q u a l i t i e s ,  then the n u l l  s o l u t i o n  - of (2.16) - is  asympto t i ca l ly  --- 
s t a b l e .  

This  l as t  c o r o l l a r y  is very w e l l  known C73, and can be t r a c e d  

d i r e c t l y  t o  Liapunov. 

3 .  Appl i c i t i on  o f  S t a b i l i t y  Criteria 

The p o s i t i v e  d e f i n i t e  diagonal matrices Cu and C' have not  

been so fa r  s p e c i f i e d .  The first s t e p  i n  t h e  a p p l i c a t i o n  of  t h e  s t a b i l i t y  

c r i t e r i a  obtained t o  a s p e c i f i c  example i s  t h e  s e l e c t i o n  of t h e s e  t w o  m a t -  

r ices ,  from which t h e  ma t r ix  B 

A ' B  + BA = -C. 

i s  ob ta ined  as t h e  s o l u t i o n  of  t h e  equa t ion  

Algorithms f o r  t h e  s o l u t i o n  of  t h i s  m a t r i x  equat ion are 

a v a i l a b l e .  A p a r t i c u l a r l y  simple one has  been r e c e n t l y  given by Smith C9l 

i n  t h e  case ma t r ix  A has t h e  form (2 .18 ) .  

It  is p a r t i c u l a r l y  convenient,  t o  o b t a i n  a l g e b r a i c a l l y  simple forms 

k? 
f o r  a ,  t o  select t h e  ma t r i ces  C' and C t o  D e  composeu ui i i m z c u .  i G Z  

b i n a t i o n s  o f  matrices of t h e  form 

C1 = 2 diag (11, 0 ,  ..., 0) (3.1) 
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and 

lJ 
Ck = 2 d i a g  (0 ,..., r , O , . . . , O ) ,  - k # 1, 

I1 

where p i s  t h e  Hurwitz de t e rminan t  [ 7 ]  of t h e  a :  

u =  

The m a t r i x  

5 '  

4 .  

3 .  

a 3 

2 

1 

a 1 a 

a 1 a 

0 a a 

0 1 2 a 

0 0 0 

a 2n-1 

2n-2 

2n-3 

2n-4 

a 

a 

a 

a n 

(3 .2 )  

(3 .3)  

equa t ion  A ' B k  + B A = -Ck, where A is g iven  by ( 2 . 1 8 )  k 

can be r a p i d l y  so lved  f o r  Bk when Ck is  of t h e  sugges t ed  form. The 

matrices ob ta ined  i n  t h i s  manner f o r  n = 2 , 3  are shown i n  Table  1. 

Ingwerson [lo] p r e v i o u s l y  p u b l i s h e d  t h e s e  matrices for  n = 2 ,3 ,4 .  If 

C' and C' C k ,  

t h e n  t h e  ma t r ix  B w i l l  be t h e  co r re spond ing  l i n e a r  combinat ion of t h e  Bk. 

are  o b t a i n e d ,  as sugges t ed ,  by l i n e a r  combina t ions  of t h e  

c 
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a3 a 0  1 3  

1 a 2 a +a 3 1 a 

n = 3  

- 
- 

- 
B2 - 

Table I 

2 
2a1a2 O ‘I 

> c =  
0 o i  1 1 

1 a a1 + O2 

B1 = 

2 a  (a a -a ) 2 2 
a 2 (a 1 2  a -a 3 )+ala3 ala2 a l a 2 - 0 3  3 1 2  3 

1 a 3 a +a 1 3  

2 
1 

2 a a  1 2  

1 a a a -a a 
1 2  3 

> c2 = 

0 

0 

0 

2 ( a  a -a 1 1 2  3 

0 

0 0 

0 0 

0 

0 

0 

0 

0 

0 



4. Two Examples 

I n  t h i s  s e c t i o n ,  t h e  s t a b i l i t y  c r i t e r i a  ob ta ined  i s  a p p l i e d  t o  

two s imple b u t  i l l u s t r a t i v e  example problems. 

As a first example, c o n s i d e r  t h e  second o r d e r  equa t ion  

0 ’  2 a l a 2  

C =  

0 0 ,  

x t pir t q ( t ) x  = 0 

or 

2 = x  1 2  

A2 = - q ( t ) x l  - px2 

where, 

d e s i r e d  t o  de te rmine  c o n d i t i o n s  on ql, q2 and p t h a t  g u a r a n t e e  t h e  

a sympto t i c  s t a b i l i t y  of t h e  n u l l  s o l u t i o n  of ( 4 . 2 ) .  

been t r e a t e d  by G h i z z e t t i  [ 5 ] ,  wi th  whom w e  wish t o  compare our r e s u l t s .  

p > 0 is a c o n s t a n t  and 0 < q  t 5 s q ( t )  5 q 2 -  E ,  for 5 > 0. I t  i s  1 

This  same problem h a s  

In t h e  case of a second o r d e r  e q u a t i o n ,  i n s p e c t i o n  of t h e  matrices 

B1 and B2 of t a b l e  one i n d i c a t e s  t h a t ,  

With t h i s  choice  one immediately o b t a i n s  
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for Bni > 0 one must select  i = 2 .  

(4.3) 

- “21 

i 
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. 

upon which t h e  s t a b i l i t y  equat ion given by (2.20) becomes 

(4.4) 

- “2 and z ( t )  = , 1 o r ,  l e t t i n g  v = - 
a 

1 p ’ v 2 - 2  
P P 

h 

4v v (1 - v,) - [ z ( t )  - v2 - Vi(l - v,)l 5 0 0  - (4.5) 1 2  

To determine t h e  appropr i a t e  va lues  of v and v f o r  t h i s  1 2 

expres s ion ,  l e t  

q1 z = - - v  - -  + v ( l - v 1 ) - 2 J v v ~ l - v 1 )  9 

1 2 2 1  1 2  
P 

2 2 2 1  - v  + v ( 1 - v 1 ) + 2 J v v ( 1 -  1 2  vl) 7 

42 z = - -  
P 

and t o  maximize t h e  d i f f e r e n c e  between z and z l e t  v1 = 1/2. Then 2 1 

z = - + v  1 - $ ,  
1 4  2 

z = - + v  1 + $ .  
2 4  2 

2 is obtained.  With t h e s e  two p a r t i c u l a r  va lues  of v and v 1 

(4.7) 

(4.8) 

i (4 .7)  y i e l d s  
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z = z  + 2 J L + z  t <  . 
2 1  4 1  

Iience, i f  0 < z + 5 < z ( t )  < 5 f o r  some E > 0, an E > 0 1 

can be found such t h a t  Eq. (4.5) is  s a t i s f i e d .  Therefore ,  Eq. (4 .1 )  i s  

a sympto t i ca l ly  s t a b l e  i f ,  f o r  some 5 > 0 ,  

0 < q1 + E 5 q ( t )  s q2 - E 

and 

- - -  q 2 - q l + 2 J p @  2 2  , 

P P  P P 

(4.10) 

(4.11) 

This  r e s u l t  i s  r ep resen ted  i n  

s(t> is s t r i c t l y  i n t e r n a l  t o  t h e  domain 2 
P 

g r a p h i c a l  form i n  Figure 1: i f  

A of  t h e  parameter space 

2 2 
ql/p vs .  q2/p , then Eq. (4.1) is asympto t i ca l ly  s t a b l e .  The domain 

A obtained by G h i z z e t t i  [SI is  shoirn a l s o .  

A s  a second example, cons ide r  t h e  d i f f e r e n t i a l  equat ion 

'K t p~ t 2 + r ( t ) x  0 , (4.11) 

where p > 0 i s  a cons t an t  and 0 < 5 r ( t )  5 r2 - 6 f o r  some 5 > 0 .  It  

i s  d e s i r e d  t o  determine c o n d i t i o n s  on r t o  gua ran tee  t h e  asymptot ic  sta- 

b i l i t y  o f  t h e  n u l l  s o l u t i o n  o f  t h i s  equa t ion .  This equa t ion  has  been 

s t u d i e d  by S t a r z i n s k i  [SI, who generated a cons t an t  Liapunov f u n c t i o n  by 

2 
c 
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t 

c 

I 

determining, through a very laborious process ,  appropr ia te  values  f o r  a l l  

s i x  elements of t h e  3 x 3 B matrix. 

Inspec t ion  of t h e  t h i r d  order  matrices of Table 1 i n d i c a t e s  

t h a t ,  f o r  Bni > 0 one must s e l e c t  e i t h e r  i = 2 o r  i = 3 .  L e t  i = 3 

upon which t h e  s t a b i l i t y  equat ion (2 .20)  becomes 

(4.12) - .-1 

Since i = 3 ,  l e t  C = C 1 +  AC2 where C1 and C2 are t h e  two matrices 

shown i n  Table 1, and X > 0. From Table 1, then  

2 

1 
B,, = %a2 - a 3 ,  B32 = a + Aal, B,, = A + a1 

1 -1 
1 c k  = 

-1 
cu = 

2a3( ala2-a3) ’ 2A( a1a2-a3) 

( 4 . 1 3 )  

a r e  immediately obtained.  Equation (4.12) can be t h e r e f o r e  r e w r i t t e n  as 

The second quadra t ic  term vanishes  i f  

(1 - a 2 )  = al(p - all. (4.15) 
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Furthermore, (4 .14)  can be s a t i s f i e d  a s  r ( t )  becomes very small only i f  
c 

1 

Assuming these two c o n d i t i o n s ,  E q .  (4 .14)  y i e l d s  

a = 1 - $4 p 2  if ~ < p : f i  

= -  1 i f  a s p  

2 

2 2  

upon which one o b t a i n s  t h a t  E q .  (4 .11)  is asympto t i ca l ly  s t a b l e  

4 
o < 5 5 r ( t )  5 - 1 ( p  2 P  t T I - 5  if ~ < p r f i  

h + P  

0 < 6 5 r ( t )  I - -  1 5 if p > f i  
X + P  

f o r  Some 5 > 0 and > 0, s i n c e  t h e  a ’ s  obtained from Eq. 

108 

where 5 -t 0 as E -+ 0. Equations (4.15) and (4 .16)  y i e l d  

2 2 a, - a, p +  p - 4 t 4 a ,  
L L ‘ .  

2 , a =  1 a =  3 x t p  ? 

t h e r e f o r e ,  l e t  

( 4 . 1 6 )  

(4 .17)  

(4 .18)  

(4 .19)  

i f  

I 

(4 .20)  

(4.18) ana 
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(4 .19)  s a t i s f y  t h e  Routh-Hurwitz i n e q u a S t i e 9 .  

Th i s  same r e s u l t  would have been o b t a i n e d  if t h e  s t a b i l i t y  

E q .  (2 .20)  f o r  i = 2 had been used.  The s t a b i l i t y  c o n d i t i o n s  ( 4 . 2 0 )  are 

i d e n t i c a l  t o  t h o s e  o b t a i n e d  by S t a r z i n s k i  C31. 
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AN INVARIANCE PRINCIPLE I N  THE THEORY OF STABILITY 

by 9 4P 
J. P. LaSalle 

Center f o r  Dynamical Systems 
Brown University 

1. Introduction. 

The purpose of t h i s  paper i s  t o  give a uni f ied  presenta- 

t i o n  of Liapunov's theory of s t a b i l i t y  t h a t  includes the  c l a s s i c a l  

Liapunov theorems on s t a b i l i t y  and i n s t a b i l i t y  as wel l  as t h e i r  

more recent extensions. The idea being exploited here had i t s  

beginnings some time ago. 

idea by Yoshizawa i n  [l] i n  h i s  study cf nnnaiitonomous d i f f e r e n t i a l  

It was, however, +he use made of t h i s  

equations and by Hale i n  [2] i n  h i s  study of autonomous funct ional  

d i f f e r e n t i a l  equations tha t  caused the  author t o  re turn  t o  t h i s  

subject  and t o  adopt t he  general  approach and point  of view of t h i s  

paper. This produces some new re su l t s  f o r  dynamical systems defined 

by ordinary d i f f e r e n t i a l  equations which demonstrate the  e s s e n t i a l  

nature of a Liapunov function and which may be usefu l  i n  appl icat ions.  

Of g rea te r  importance, however, i s  the  poss ib i l i t y ,  as  already i n -  

dicated by Hale' s r e s u l t s  fo r  functional d i f f e r e n t i a l  equations, 

*This research was supportea i n  pari by Zit- ; ; a t i v ~ , 1  !.c:zz:~t?r~ :?a. 
Space Administration under Grant No. NGR-4 - and under Contract 
No. NAS8-11264, i n  p a r t  by the  U n i t e d s r c e  through the  
A i r  F>rce Office of Sc ien t i f i c  Research under G r a n t  No. AF-AFOSR-693-65 
and i n  p a r t  by the  United States  Army Research Office, Durham, under 
Contract No. DA-31-124-ARO-D-270. 
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t h a t  these ideas can be extended t o  more general  c lasses  of dynam- 

i c a l  systems. 

t o  do t h i s  for some spec ia l  types of dynamicalsystems defined by 

p a r t i a l  d i f f e r e n t i a l  equations. 

It i s  hoped, for  instance,  t h a t  it may be possible  

In  sec t ion  2 we present some basic  r e s u l t s  f o r  ordinary 

d i f f e r e n t i a l  equations. Theorem 1 i s  a fundamental s t a b i l i t y  

theorem f o r  nonautonomous systems and i s  a modified version of 

Yoshizawa's Theorem 6 i n  [l] . A simple example shows t h a t  t he  

conclusion of t h i s  theorem i s  the bes t  possible .  However, when- 

ever the l i m i t  s e t s  of solut ions are  known t o  have an invariance 

property then sharper r e s u l t s  can be obtained. This "invariance 

principle" explains the  t i t l e  of t h i s  paper. It had i t s  or ig in  for 

autonomous and per iodic  systems i n  [ 3 ]  - [5], although we present 

here improved versions of those r e su l t s .  

l i shed  an invariance property fo r  almost per iodic  systems and ob- 

t a i n s  thereby a similar s t a b i l i t y  theorem for almost per iodic  

systems. Since l i t t l e  a t t en t ion  has been paid t o  theorems which 

make possible estimates of regions of a t t r a c t i o n  (regions of asymp- 

t o t i c  s t a b i l i t y )  f o r  nonautonomous systems r e s u l t s  of t h i s  type a re  

included. Section 3 i s  devoted t o  a b r i e f  discussion of some of 

Hale' s recent r e s u l t s  [2] f o r  autonomous funct ional  d i f f e r e n t i a l  

equations. 

Mil ler  i n  [6] has estab- 

2.  Ordinary d i f f e r e n t i a l  equations. 

Consider t h e  system 
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f = f ( t , x )  

Rn+l where x i s  an n-vector, f i s  a continuous function on 

t o  R and s a t i s f i e s  any one o f  the conditions guaranteeing unique- 

ness of solut ions.  For each x in  Rn we define 1x1 = 

n 

2 2 3  (xr + ... + xn) , and fo r  E a closed s e t  i n  Rn we def ine 
Y 

d(x,E) = Min [ I  x-yl : y i n  E}. 

se lves  t o  bounded solut ions,  we introduce the  point  a t  

define d(x,mj = Ixl-' . 
mem d(x,Ew) = Min[d(x,E), d(x ,m)} .  If x ( t )  i s  a solut ion of 

(I), we say t h a t  x ( t )  approaches E as t .+ CD i f  d(x(t) ,E) -10 

as t + m. If we can f i n d  such a set  E, we have obtained in- 

formation about t he  asymptotic behavior of x ( t )  as t + =. The 

Since we do not wish t o  confine our- 

and 

Thus xhen we wr i te  E* = E v!m}, w e  s h a l l  

b e s t  t h a t  we could hope t o  do i s  t o  f i n d  the  smallest  closed s e t  

R t h a t  x ( t )  approaches as t +m.  !3iis a e t  R i s  ca l l ed  the  

pos i t i ve  l i m i t  s e t  of x ( t )  and t h e  points  p i n  Q a re  ca l l ed  

the  pos i t ive  l i m i t  points  of x ( t ) .  I n  exact ly  the  same way one 

def ines  x ( t )  + E  as  t -+-a , negative l i m i t  s e t s ,  and negative 

l i m i t  points.  This i s  exact ly  G. D. Birkhoff 's  concept of l i m i t  

s e t s .  A point  p i s  a pos i t ive  l i m i t  point  of x ( t )  i f  and only 

-- 
-- 

i f  t he re  i s  a sequence of times tn approaching m as n + 00 and 

such t h a t  x ( tn )  + p as n 4 m . I n  the  above it m a y  be t h a t  the  

maximal i n t e r v a l  of de f in i t i on  of x ( t )  i s  [O,T) . This causes 

no d i f f i c u l t y  s ince i n  t h e  results t o  be presented here  we need 

only with respect  t o  time t replace a by 7 .  We usual ly  ignore 
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t h i s  p o s s i b i l i t y  and speak as  though our so lu t ions  a re  def ined on 

[0,m) o r  

1 n L e t  V(t ,x)  be a C f'mctior; oil [O,m) x R t o  R, and 

let G be any s e t  in Rn . We s h a l l  say t h a t  V i s  a Liapunov 

funct ion on G f o r  equation (1) i f  V(t ,x) z o m u .  V(t,x) 5 

-W(x) 6 0 f o r  all t > 0 and a l l  x i n  G where W i s  

contir,uous or1 RA t o  R arid 

i 

We define ( E  i s  t h e  c losure  of G )  

E = {x; W ( X )  = 0, x i n  E ) .  

The following r e s u l t  i s  then a modified but  c l o s e l y  r e -  

l a t e d  version of Yoshizawa's Theorem 6 i n  [l]. 

THEOREM 1. If V i s  a Liapunov func t ion  on G f o r  equation (l), 

then each s o l u t i o n  x ( t )  of (1) t h a t  remains i n  G f o r  a l l  

t > t 2 0 approaches E* = E U  {a) as  t + 00 , provided one of 

t h e  following condi t ions i s  s a t i s f i e d :  

0 

(i) For each p i n  t h e r e  i s  a neighborhood 11 of 

p such t h a t  I f ( t , x ) (  i s  bounded f o r  a l l  t > 0 and 

a i l  x i n  N. 

(ii) W i s  C1 and fi i s  bounded from above o r  below 

along each so lu t ion  which remains i n  G f o r  all 

t > t o Z O .  



. 

If E i s  bounded, then each solution of (1) t h a t  remains i n  G 

fo r  t > t 2 0 e i the r  approaches E o r  as t + a ~  . 
0 

Thus t h i s  theorem explains precisely the nature of the 

information given by a Liapunov function. 

r e l a t ive  ta a s e t  G defines a s e t  E which under the conditions 

of the  theorem contains (locates) all t he  posi t ive l i m i t  s e t s  of 

solutioris which f o r  posi t ive t ime r e m i n  in 

applying the  r e s u l t  i s  t o  f ind  "good" Liapunov functions. For 

instance, the zero function V = 0 i s  a Liapunov function f o r  the  

wliole space Rn 

information since E = R . It i s  t r i v i a l  but usefuJ- for appli-  

cat ions t o  note t h a t  i f  V1 and V2 are Liapunov functions on G, 

then V = V1 + Vz i s  also a Liapunov function and E = E n E2 . 

A Liapunov function 

G ,  The problem i n  

a id  condition (ii) i s  s a t i s f i e d  but  gives no in-  

n 

1 . 
If E i s  smaller t h m  e i the r  E o r  E2 , then V i s  a "bet ter"  1 

Liapunov f'unction than e i the r  v1 or v2 and i s  a l w a y s  a t  least as 

. 

"good" as e i the r  of the two. 

Condition (i) of Theorem 1 i s  essent ia l ly  the  one used 

by Yoshizawa. 

i s  s a t i s f i e d  and condition (i) i s  not. 

the  conclusion of the  theorem i s  t h e  bes t  possible. Consider 

*? + p(t)A + x = 0 where p ( t )  Z 6 > 0 . Define 2V = x + y , 
2 where ?r = 2 . Then = -p( t )y  5 - 6y2 and V i s  a Liapunov 

2 2 2 function on R . NOW w = 6y and G = 2 6 ~  = -2~(xy + p( t )y  B 

-26xy. 

We now look a t  a simple example where condition (ii) 

The example a l so  shows t h a t  

2 2  

Since all solut ions are evidently bounded f o r  all t > 0, 



condition (ii) i s  sa t i s f i ed .  Here E i s  the  x-axis (y = 0) 

and for each solut ion x ( t ) ,  y ( t )  = K ( t )  -+ '3 as t -+ m . Noting 

t h a t  the equation 

x ( t )  = 1 + e 

out fur ther  r e s t r i c t i o n s  on p . 

**  t x + (2 + e )? + x = 0 has a solut ion 

-t , we see t h a t  t h i s  i s  the  bes t  possible  r e s u l t  with- 

In  order t o  use Theorem 1 there  must be some means of 

determinlng which so1Lii;ioIis remain i n  G . The following c o r d l a z y ,  

which i s  an obvious consequence of 'Theorem 1, gives one way of 

doing t h i s  and also provides f o r  nonautonomous systems a method fo r  

estimating regions of a t t r ac t ion .  

Corollary 1. Assume t h a t  there  e x i s t  continuous functions U(X)  

and v(x) on Rn t o  R such t h a t  u(x) 5 V(t,x) 5 V(X)  f o r  a l l  

t Z 0 . Define Q = (x ; U ( X )  < 73 and l e t  G' be a component 

+ 
of Q9 

containing G' . If V i s  a Liapunov function on G f o r  (1) and 

the conditions of Theorem 1 

(1) s t a r t i n g  i n  G+ 

t > to and approaches E* as t -+a . If G i s  bounded and 

Eo = T G  C G' , then E i s  an a t t r a c t o r  and G i s  i n  i t s  

region of a t t r ac t ion .  

+ 
11 

Let G denote the component of Q = (x ; v(x) < 11) 
rl 

are  s a t i s f i e d ,  then each so lu t ion  of 

a t  any time to 2 o remains i n  G f o r  d l  

0 + 

I n  general  we know t h a t  i f  x ( t )  i s  a so lu t ion  of 

( l ) - - i n  fac t ,  if x ( t )  i s  any continuous funct ion on R t o  R"-- 

then i t s  pos i t ive  l i m i t  s e t  i s  closed and connected. If x ( t )  i s  

bounded, then i t s  pos i t ive  l i m i t  s e t  i s  compact. There are ,  how- 

4 
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ever, spec ia l  c lasses  of d i f f e r e n t i a l  equations where the  limit 

s e t s  of solut ions have an addi t ional  invariance property which 

makes possible  a re f iceuec t  of Theorm 1. 

the  autonomous systems 

The , f i r s t  cf these a re  

The l i m i t  s e t s  of solut ions of (3) are  invar ian t  s e t s .  

i s  defined on [o,w) and if p i s  a pos i t ive  l i m i t  point  of x ( t ) ,  

If x ( t )  

then the points  on the  so lu t ion  thraugh 

val of de f in i t i on  a re  pos i t ive  l i m i t  points  of x ( t ) ,  If x ( t )  i s  

Soizded f o r  

p on i t s  m a x i m a l  i n t e r -  

t > 0 , the= it i s  deficed 03 [O,w), i t s  pos i t ive  

limit s e t  52 i s  compact, noneinpty and solut ions through points  

p of R a re  defined on (-m,-) (i*e. ,  R i s  invariant) .  If 

the  maximal domain of def in i t ion  of x ( t )  f o r  t > 0 i s  f i n i t e ,  

then x ( t )  has no f i n i t e  posi t ive l i m i t  points:  t h a t  is ,  if  the  

m a x h a  i n i e r v a i  of def in i i l on  of x ( t )  fo r  i > o i s  CO,~), 
then x ( t )  --f 00 as t -+ p . As we have sa id  before, we w i l l  always 

speak as though our solut ions are defined on and it should 

be remembered t h a t  f i n i t e  escape time i s  always a p o s s i b i l i t y  unless  

(-a,-) 

there  i s ,  as f o r  example i n  Corollary 2 below, some condition t h a t  

ru l e s  it out. I n  Corollary 3 below, the  solut ions might wel l  go t o  

inf in i t j r  in f i n i t e  time. 

The invariance property of the  l i m i t  s e t s  of solutions 

of autonomous systems 

Let V be a C1 function on R t o  R . If G i s  any a r b i t r a r y  

( 3 )  now enables us t o  r e f ine  Theorem 1. 

n 



s e t  i n  Rn , we say t h a t  V i s  a Liapunov funct ion on G f o r  

equation (3) i f  = (grad V ) .  f does not change sign on G . 
- 

- 
Define E = [ x ; V(x) = 3 , x i n  G: j , where G i s  ihe 

closure of G . Let M be the  l a r g e s t  invar ian t  s e t  i n  E . M 

w i l l  be a closed s e t .  The fundamental s t a b i l i t y  theorem for 

autonomous systems i s  then the following: 

TKEORFM 2. I f  V i s  a Liapunov function on G f o r  (3),  then 

each solut ion x ( t )  of (3) t h a t  remains i n  G fo r  a l l  t > 0 

(-t < 0) approaches M* = M U [m) as t 4 m (t 4 -m).  If M i s  

bounded, then e i t h e r  x ( t )  -+ M or x ( t )  + m as  t + m (t -+ -a) . 
This one theorem contains a l l  of t he  usual  Liapunov l i k e  

- I  
c 

4 

theorems on s t a b i l i t y  and i n s t a b i l i t y  of autonomous systems. Here 

however, there  a re  no conditions of def in i teness  f o r  V or V , 
and it i s  of ten  possible  t o  obtain s t a b i l i t y  informatiori about a 

system w i t h  these more general  types of Liapunov funct ions.  The 

f i r s t  coro l la ry  below i s  a s t a b i l i t y  r e s u l t  which fo r  appl ica t ions  

has been qu i t e  usefu l  and tlie second i l l u s t r a t e s  how one obtains 

informatlon on i n s t a b i l i t y .  Cetaev' s i n s t a b i l i t y  theorem i s  
v 

s imi la r ly  an irnmediate consequecce of Theorem 2 ( see  sec t ion  3). 

COROLLARY 2.  Let G be a component of  Q = ( x ; V(x) < ) . 
Assiirne t h a i  G i s  bounded, V 5 0 on G , and M = M G c G . 
Then M i s  an a t t r a c t o r  and G i s  i n  i t s  region of a t t r a c t i o n .  

I f ,  i n  addition, 

rl 
0 -  

0 

V i s  constant on the  boundary of Mo , then 
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t '  
I 

Mo i s  a s t ab le  a t t r ac to r .  

Note t h a t  i f  Mo consis ts  of a s ing le  point  p , 
then p i s  asymptotically s tab le  and G provides an estimate of 

i t s  region of asymptotic s t a b i l i t y .  

COROLLARY 3. Assume tha t  r e l a t ive  t o  (3) t h a t  V V > 0 on G 

acd on the  boundary of G t h a t  V = 0 . Then each so lu t ion  of 

(3) s t a r t i n g  i n  G approaches 00 as t + 03 (or possibly i n  

f i n i t e  t h e ) .  

There a re  a l so  some spec ia l  c lasses  of nmautonomous 

systems where the l i m i t  s e t s  of solut ions have an invariance 

property. Tlie simplest  of these a re  periodic systems (see 133). 

Eere i n  order t o  avoid introducing the  concept of a per iodic  

approach of a solut ion of (4) t o  a s e t  and the concept of a 

per iodic  l i m i t  point  l e t  us confine ourselves t o  solut ions 

of (4) which a re  bounded f o r  t > 0 . Let R be the  pos i t ive  

l i m i t  s e t  of such a solut ion x ( t ) ,  and l e t  p be a point i n  R . 
Then there  i s  a solut ion of (4) s t a r t i n g  a t  p which remains i n  

R for all t i n  (-wym) ; t h a t  i s ,  i f  one s t a r t s  a t  p a t  t he  

proper time the  solut ion remains i n  R f o r  a l l  time. Tnis i s  tbe  

sense now i n  which R i s  an invar ian t  se t .  Let V(t,x) be C 

on K x n alii pei-iZZ5: ill t. of Geriod T . For an a rb i t r a ry  

s e t  G of Rn we say that  V i s  a Liapunov funct ion - on G f o r  

x ( t )  

1 

n 



f o r  t h e  per iodic  system (4 )  i f  V does not  change s i g n  f o r  a l l  

t and a l l  x i n  G . Define E = [ ( t , x ) ;  V(t ,x) = 0, x i n  G ) 

and l e t  M be t h e  union of a l l  s o l u t i o n s  x ( t )  of (4)  with t h e  

property t h a t  ( t , x ( t ) )  i s  i n  E f o r  a l l  t . M could be c a l l e d  

" t h e  l a r g e s t  i n v a r i a n t  s e t  r e l a t i v e  t o  E". One then obta ins  t h e  

following vers ion  of Theorem 2 f o r  per iodic  systems: 

- 

THEOREM 3. If V i s  a Liapunov func t ion  on G for t h e  per iodic  

system ( b ) ,  then each s o l u t i o n  of (4) t h a t  i s  bounded and remains 

I n  G for  a l l  t > 0 (t < 0) approaches M as t + 03 (t 4 A) .  

I n  [6] Miller showed t h a t  t h e  l i m i t  s e t s  of s o l u t i o n s  

ol' almost p e r i o d i c  systems have a s i m i l a r  invariance proper ty  and 

from t h i s  he obta ins  a r e s u l t  q u i t e  l i k e  Theorem 3 f o r  almost 

p e r i o d i c  systems. Ibis then y i e l d s  f o r  p e r i o d i c  and almost p e r i o d i c  

systems a whole chain of theorems on s t a b i l i t y  and i n s t a b i l i t y  

q u i t e  similar t o  t h a t  f o r  autonomous systems. For example, one has 

+ COKOLLARY 4. 

Let G be a component of Q . Let G be t h e  compofient of 

QV = ( x; V(t,x) < '7 f o r  some t i n  [O,T] ) conta in ing  G' . If  G 

i s  bounded, V 5 0 f o r  a l l  t and a l l  x i n  G , and i f  M = 

M fl G C G', then Mo i s  an a t t r a c t o r  and G' i s  i n  i t s  region of 

a t t r a c t i o n .  If V(t,x) = c p ( t )  f o r  a l l  t and a l l  x on t h e  

boundary of Mo , then  Mo i s  a s t a b l e  a t t r a c t o r .  

L e t  QV = ( x ;  V(t,x) < 7 ,  a l l  t i n  [O,T] } , and 

+ 4- 

'7 

0 

Our las t  example of an invariance p r i n c i p l e  f o r  ord inary  
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differential equations is that due to Yoshizawa in [l] for "asymp- 

totically autonomolis" systems. It is a consequence of Theorem 1 

and results by Markus and Opial (see [i] for references) on the 

limit sets of such systems. A system of the form 

2 = F(x) + g(t,X) + h(t,x) ( 5 )  

is said to be asymptotically autonomous if (i) g(t,x) + 3 as 

t -+a uniformly f o r  x in an arbitrary compact set of R"' , 
(ii) [h(t,q(t))l dt < m f o r  d l  cp bounded and continuous 

on [O,m) to Rn . The combined results of Markus and Opial then 

state that the positive limit sets of solutions of ( 5 )  are in- 

m 

0 

variant sets of % = F(x) . Using this, Yoshizawa then improved 

Theorem 1 for asymptotically autonomous systems. 

It turns out to be useful, as we snai l  iiiustratLte i n  a 

(1) moment on tie simpiest possible ex&?ple, in studying systems 

which are not necessarily asymptotically autonomous to state the 

theorem in the following manner: 

THEOREM 4. 

known that a solution x(t) of (1) remains in G for t > 0 

and is also a solution of an asymptotically autonomous system ( 5 ) ,  

then x(t) approaches M* = M u (m) as t -+ m , where M is the 

largest invariant s e t  of 2 = F(x) in E . 

If, in addition to the conditions of Theorem 1, it is 

It can happen that tne s y s i , ~  (1) I; ltndlf -cpFf,otically 

autonomous in which case the above theorem can be applied. However, 
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as the following example illustrates, the original system may not 

itself be asymptotically autonomous but it still may be possible 

to construct for each solution of (1) an asymptotically autonomous 

system (5) which it also satisfies. 

Consider again the example 

x = y  
y =  - x -  P W Y  , 0 < 8  5 p(t) 5 m 

for all t > 0 

Now we have the additional assumption that is bounded from 

above. Let (x(t), y(t)) be any solution of (6). As was argued 

previously below Theorem 1, all solutions are bounded and y(t) + 0 

as t --f m . Now (Y(t), y(t)) satisfies 2 = y , y = 

p(t) 

-x - p(t)y(t), and this system is asymptotically autonomous to 

( 9 )  

E is the x-axis and the largest invariant set of (*) in E is the 

origin. 

large 

2 =ry  , $ = -x . With the same Liapunov function as before, 

Thus f o r  (6) the origin is asymptotically stable in the 

3. Autonomous functional differential equation. 

Difference differential equations of the form 

have been studied almost as long as ordinary differential equations 

and these as well as other types of systems are of the general form 
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I 

where x i s  i r i  Rn and x i s  the function defined on [-r,O] 

by ~ ~ ( 7 )  = x(t+T),  -r d T 5 0. Thus xt i s  t he  function that  

describes the pas t  h i s to ry  of the system on the  i n t e r v a l  

and i n  order t o  consider it as an element i n  the  space C of 

cont imous f m c t i o n s  a l l  defined on the  same i n t e r v a l  [ - r , O ] ,  x, 

i s  taken t o  be the  function whose graph i s  the  t r ans l a t ion  of the 

graph of x on t'ne in t e rva l  [t-r,t] t o  t>he i n t e r v a l  [-r,O] . 
Since such equations have had a long h i s to ry  it seems surpr i s ing  

t h a t  it i s  only within the  l a s t  10 years o r  so t h a t  the geometric 

theory of ordinary d i f f e r e n t i a l  equations has been successful ly  

ca r r i ed  over t o  funct ional  d i f f e r e n t i a l  equations. 

has demonstrated the  effectiveness of a geometric approach i n  ex- 

t 

[t-r,t] 

b 

Krasovskii [8] 

+ &nding the  c l a s s i c a l  Liapunov theory, including the converse 

theorems, t o  funct ional  d i f f e r e n t i a l  equations. 

aspects of t h e i r  theory which have yielded t o  t h i s  geometric approach 

can be found i n  t h e  paper [g] by Hale. 

t o  present Hale 's  extension i n  [ 2 ]  of the  r e s u l t s  of Section 2 of 

t h i s  paper t o  autonomous functional d i f f e r e n t i a l  equations 

An account of other 

What we wish t o  do here i s  

B =  f ( x )  t . (9) 

It i s  t h i s  extension t h a t  has had so far the  g rea t e s t  success i n  

studying s t a b i l i t y  propert ies  of the  solut ions of systems ( g ) ,  and 

it i s  Dossible t h a t  t h i s  may lead t o  a s imi la r  theory f o r  spec ia l  

c lasses  of systems defined by p a r t i a l  d i f f e r e n t i a l  equations. 

With r 2 3 the  space C i s  the  space of continuous 



funct ions cp on [ - r , O ]  t o  Rn with l{cpll = 

m a  ( I c p ( ~ )  I ; -r 5 T s 0). Convergence i n  c i s  uniform conver- 

gence on [ - r , O ] .  A funct ion x def ined on [ - r , m )  t o  Rn i s  

s a i d  t o  be a s o l u t i o n  of (9) s a t i s f y i n g  t h e  i n i t i a l  condi t ion  

a t  time t = 0 i f  t h e r e  i s  an a > 0 such t h a t  k ( t )  = f ( x t )  

f o r  a l l  t i n  [O,a) a,nd x = cp . Remember x = cp means 

X ( T )  = c p ( ~ ) ,  -r 5 'I 5 0. At t = 0, k i s  t h e  r i g h t  hand der iv-  

cp - 

0 0 

a t i v e .  The ex is tence  uniqueness theorems a r e  q u i t e  s i m i l a r  t o  

I 1 

. I  

those f o r  ord inary  d i f f e r e n t i a l  equations.  If  f i s  l o c d l y  

Lipschi tz ian  on C, then f o r  each cp i n  C t h e r e  i s  one and only 

one s o l u t i o n  of (9) and t h e  s o l u t i o n  depends cont inuously on cp . 
The s o l u t i o n  can also be extended i n  C f o r  t > 0 as  long as it 

remains bounded. A s  i n  Sect ion 2, we w i l l  always speak as though 

so lu t ions  a r e  def ined on [ - r , m ) .  The space C i s  now t h e  s t a t e  

space of (9) and through each poin t  cp of C t h e r e  i s  t h e  motion 

or flow x s t a r t i n g  a t  cp defined by t h e  s o l u t i o n  x ( t )  of (9) 

s a t i s f y i n g  a t  time t = 0 t h e  i n i t i a l  condi t ion  cp; x 0 5 t <a, 

i s  a curve i n  C which s t a r t s  a t  time t = 0 a t  cp. I n  analogy 

t o  Sect ion 2 with C rep lac ing  Rn, xt r e p l a c i n g  x ( t ) ,  and 

IIx 1 1  rep lac ing  I x ( t ) l ,  we def ine  t h e  d i s t a n c e  d(x  ,E) of xt 

t 

t' 

t t 

from a closed s e t  E of C t o  be d(xt,E) = min (llxt-$l'; $ E E ) .  

The p o s i t i v e  l i m i t  s e t  of x i s  then def ined  i n  a manner completely 

analogous t o  Sect ion 2 .  Because t h e r e  are some important d i f f e r e n c e s  

t 

we s h a l l  be s a t i s f i e d  here  wlth r e s t r i c t i n g  ourse lves  t o  motions 
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x bounded f o r  t > 0. One of the differences here i s  t h a t  i n  

C 

t 

closed and bounded s e t s  are  not always compact. Another i s  t h a t  

although we have uniqueness of solutions i n  the  fu ture  two motions 

s t a r t i n g  from d i f f e ren t  i n i t i a l  conditions can cone together i n  

f i n i t e  time t > 0; a f t e r  t h i s  they coincide for t 2 t . (The 

motions def ine semi-groups and not necessar i ly  groups.) 

0 0 

Hale i n  [2] has, however, shown t h a t  tile pos i t ive  lhit 

s e t s  R of bounded motions x a re  nonempty, compact, connected, 

invariant  s e t s  i n  C . Invariance here i s  i n  the  sense tha t ,  i f  

x i s  a motion s t a r t i n g  a t  a poirit of R,  then there  i s  an exten- 

s ion onto (-m,- r ]  such t h a t  x ( t )  i s  a solut ion of (9) f o r  a l l  

t i n  (-w,m) and x remains i n  R for  a l l  t . With t h i s  

i-esiilt he I s  t h e n  &le  tc? nbtain a r e s u l t  which i s  s imilar  t o  

Corollary 1 of Section 2. 

t 

t 

t 

For cp E C l e t  x ( 9 )  denote the  motion defined by (9) t 

s t a r t i n g  a t  cp . For V a continuous function on C t o  R define 

V and Q by R 

and 

THEOREM 5 .  If V i s  a Liapunov function*on G f o r  ( 9 )  and x i s  

a t r a j e c t o r y  of (9 )  which remains i n  G and i s  bounded f o r  t > 3,  

t 

then xt + M  as t --f . 

* A s  before ,  V i s  a Liapunov f u n c t i o n  on G ,  i f  does not 
change s i g n  on G. 



Hale has a l s o  given t h e  following more u s e f u l  vers ion  

of t h i s  r e s u l t .  

COROLLARY 5 .  Define Q7 = (cp; V ( q )  < 7) and l e t  G be Q or  

a component of 

G f o r  (9) and t h a t  e i t h e r  (i) G i s  bounded or  (iii) Icp(0)l i s  

bounded for cp i n  G . Then each t r a j e c t o r y  s t a r t i n g  i n  G 

approaches M as  t -+ 00 . 

il 

. Assume t h a t  V i s  a Liapunov funct ion on 
Qil 

V 
The following i s  an extension of Cetaev's i n s t a b i l i t y  

theorem. 

i n  [2], which should have s t a t e d  "V(cp) > 0 on U when cp # 0 

and V(0) = 0" and a t  t h e  end ' I . . .  i n t e r s e c t  t h e  boundary o f  

C . . . ' I .  This i s  c l e a r  from h i s  proof and i s  necessary s ince  he 

wanted t o  genera l ize  t h e  usua l  statment of Cetaev's theorem t o  i n -  

clude t h e  p o s s i b i l i t y  t h a t  t h e  equi l ibr ium poin t  be i n s i d e  U as 

w e l l  as on i t s  boundary. 

This i s  a somewhat s impl i f ied  vers ion  of Hale 's  Theorem 4 

r 
U 

COROLLARY 6. Let p E C be a n  equi l ibr ium poin t  of (9) contained 

i n  the  c losure  of an open s e t  U and l e t  N be a neighborhood of 

p . Assume t h a t  (i) V i s  a Liapunov func t ion  on G = U N, 

(ii) M n G i s  e i t h e r  t h e  empty s e t  or p, (iii) V(cp) < on G 

when cp # pp and (iv) V(p) = 7 and V(cp) = 7 on t h a t  p a r t  of 

t h e  boundary of G i n s i d e  N. Then p i s  uns tab le .  I n  f a c t ,  if 

No 
each t r a j e c t o r y  s t a r t i n g  a t  a p o i n t  of Go = G n No o t h e r  than  P 

leaves No i n  f i n i t e  time. 

i s  a bounded neighborhood of p proper ly  contained i n  N then 
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I -  
I 
, 

... 

Proof. 

t r a j ec to ry  s t a r t i n g  inside Go at a point other than p must 

e i the r  leave Go, approach i ts  boundary o r  approach p . 
Conditions (i) and ( iv)  imply tha t  it cannot reach or approach t h a t  

pa r t  of the  boundary of Go inside No nor can it approach p 

as t + m  . Now (ii) s ta t e s  tha t  there  are no points of M on 

t h a t  pa r t  of the  boundary of No ins ide  G . Hence each such 

t r a j ec to ry  must leave No in  f i n i t e  time. Since p i s  e i the r  i n  

the  i n t e r i o r  or on the  boundary of G, each neighborhood of p 

contains such t r a j ec to r i e s ,  and p i s  therefore  unstable. 

By the  conditions of the  corol lary and Theorem 6 each 

I n  [2] it was shown t h a t  the  equilibrium point cp = 0 of 

3 3 A(%) = a x  (t) + bx (t-r) 

was unstable i f  a > 0 and [bl  < [ a i .  Using the same Liapunov 

function and Theorem 5 we can show a b i t  more. With 

4a -r 

4 t 

4a %-r 
v(xt) = - - (t) + + .I x6(e)de 

and 

which i s  nonpositive when (negative de f in i t e  with re- 

spect t o  ~ ( 0 )  and q(-r)); tha t  is, V i s  3 Liapimov f m c t i o n  

c.n C and E = (cp; cp(0) = cp(-r) = 0) . Therefore M i s  simply 

the  n u l l  function cp = 0 . If a > 0, the region G = (cp; V(cp) < 0 )  

lbl < 1.1 

1277 



i s  nonempty, and no t r a j e c t o r y  s t a r t i n g  i n  G can have cp = 0 as 

a pos i t ive  l i m i t  point  nor can it leave G . Hence by Theorem 5 

each t r a j ec to ry  s t a r t i n g  in G must be unbounded. Since cp = 3 

i s  a boundary point of G, it i s  unstab1.c. It i s  a l so  eas i ly  seen 

[2]  t ha t  i f  a < 0 and lbl < 1 a!, then cp = 0 i s  asymptotically 

s t ab le  i n  the large. 

In  [2] Hale has a l so  extended t h i s  theory f o r  systems 

w i t h  i n f i n i t e  l ag  

of s ign i f icant  examples of  t he  appl icat ions of t h i s  theory. 

(r = a), and i n  t h a t  same paper gives a number 
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1. INTRODUCTION 

Optimization of t h e  f l i g h t  t r a j e c t o r y  of a rocket powered space vehicle  
with t h e  ind i rec t  method of calculus of var ia t ions  requires  t h e  s i m u l -  
taneous integrat ion of t h e  equations of  motion (cons t ra in t  equations) 
and the  Euler-Lagrange equations f o r  t h e  Lagrange mul t ip l ie rs .  Because 
of t h e  d i f f i c u l t y  i n  obtaining an ana ly t i ca l  so lu t ion  t o  t h i s  problem 
during powered port ions of t h e  t r a j e c t o r y ,  t h e  in tegra t ion  must be 
performed numerically. For coasting port ions (zero  t h r u s t )  of t h e  tra- 
jec tory  a n  ana ly t i ca l  so lu t ion  f o r  t he  motion of t he  vehicle  can be 
produced if it i s  assumed tha t  t h e  vehicle  moves i n  a vacuum under the  
act ion of t he  g rav i t a t iona l  f i e l d  of a s ing le  cen t r a l  body ( sphe r i ca l  
e a r t h ) .  The motion i s ,  of course, governed by the  c l a s s i c a l  Kepler 

However, t h e  Lagrange mul t ip l i e r s  a r e  
not constant during coast ing portions of t h e  t r a j e c t o r y  and it i s  neces- 
sary t o  solve the  Euler-Lagrange equations f o r  t he  mul t ip l i e r s  t o  deter-  
mine t h e  optimal d i r ec t ion  of t h r u s t  a t  t h e  end of each coast ing a rc .  
It i s  t h e  purpose of t h i s  paper t o  present a new ana ly t i ca l  so lu t ion  f o r  
t he  mul t ip l ie rs .  
so lu t ion  gives a pa r t i cu la r ly  convenient ana ly t i ca l  form of so lu t ion  f o r  
optimal coasting a rcs .  
t r a j e c t o r y  computation, t h e  ana ly t i ca l  so lu t ion  not only reduces compu- 
t a t i o n a l  time, but a l s o  el iminates  t h e  e r r o r s  due t o  numerical in tegra-  
t i o n  f o r  long coast ing a rcs .  
vous problem1, it w a s  found t h a t  long coast ing a rcs  were o f t en  a 
necessi ty  t o  avoid severe payload penal t ies .  
so lu t ion  f o r  coast  i s  of espec ia l  advantage. 

Analyt ical  so lu t ions  for coast were presented by W. E. Miner2 i n  1963 
and by S. A. Jurovics3.  I n  t h e  June, 1965, i s sue  of t h e  AIAA Journal ,  
M. W. Eckenwilerh presented a so lu t ion  very s imi l a r  t o  Miner's. These 
solut ions have the  disadvantage of a s ingu la r i ty  at zero eccen t r i c i ty .  
Since c i r cu la r  and near c i r c u l a r  o r b i t s  are of major i n t e r e s t ,  €h i s  
s ingu la r i ty  i s  removed i n  the  present solut ion.  
appears here f o r  near un i t  eccen t r i c i ty .  
parabol ic  o rb i t s  and, i n  addi t ion,  an approximate so lu t ion  f o r  near  
parabolic o rb i t s  t h a t  e l iminates  t h e  numerical d i f f i c u l t y  a r e  given. 

' so lu t ion  of t he  two body problem. 

This so lu t ion  used with t h e  appropriate  form of Kepler 's  

When implemented i n  a numerical rou t ine  f o r  

In  s tud ie s  made of t h e  ea r th  o r b i t  rendez- 

In  t h i s  case,  t h e  a n a l y t i c a l  

A numerical d i f f i c u l t y  
However, an exact so lu t ion  f o r  

2. MINIMUM FUEL TRAJECTORY 

The equations of motion f o r  a rocket i n  t h e  g rav i ty  f i e l d  of a sphe r i ca l ,  
homogeneoils e a r t h  are ; 



2. (Continued) 

The state variables are the  position vector R, t he  velocity 7, and the  
mass m. The control variable i s  the th rus t  vector T. The gravi ta t iona l  
constant of t h e  cent ra l  boyd and the magnitude of E are denoted by p 
and r, respectively. 
constant, ana given by 

The mass flow rate of t he  rocket is assumed t o  be 

m = -M 

For minimum fuel consumption, it is  required t h a t  

the  

The 
The 

Appending the  equations of motion, Eqs. (1) and t h e  mass flow require- 
ment Eq. (2) as constraints with the Lagrange multiplier techniques, 

following in tegra l  must be a minimum 

0 - 
components of t h e  vectors 7 and Y, and u are the  Lagrange multipliers.  
Ner-Lagrange equations for these Lagrange multipliers are : 

- -  
X + y * O  

- -  
T X  - - - = o  
T A  

1 -  - u - z X ’ T = o  (5) 

where T and A a re  t he  magnitudes o f  
these qquations shows tha t  x is the same direction as the  thrus t .  
t h e  th rus t  is  zero, t he  last equation implies t h a t  u i s  a constant. 
following d i f f e r e n t i a l  equation for x comes from t he  first two of Eqs.  (5).  

and y, respectively. The t h i r d  of 

The 
When 

This equation and the  constraint equations have t o  be s a t i s f i e d  along 
t h e  optimum t ra jec tory .  



3. 

During coast t he  plane of motion i s  fi-xed, and from Eq. (6)  t h e  d i f f e r -  
e n t i a l  equation f o r  t he  component of X normal t o  the  plane of motion 
be come s 

ANALYTICAL SOLUTION FOR LAGRANGE MULTIPLIERS DURING COAST PERIOD 

L e t  x and y represent t h e  components of t h e  Kepler so lu t ion  i n  a car te-  
sian coordinate system with t h e  x ax i s  d i rec ted  toward perigee and t h e  
y axis i n  t h e  plane of motion. By comparing Eq. ( 7 )  with the  equation 
of motion during coast ,  we see  t h a t  t h e  so lu t ion  of Eq. ( 7 )  i s  

where K1 and K2 a r e  t h e  in tegra t ion  constants.  It i s  p a r t i c u l a r l y  - 
convenient t o  assume t h e  so lu t ion  of Eq. ( 6 )  f o r  t h e  project ion of  A 
on t h e  plane of motion t o  have the  form 

The F and G a re ,  i n  general ,  functions of time and uniquely def ine xp 
when t h e  posi t ion and the  ve loc i ty  vectors do not coincide.  

Note t h a t  the form of Eq. ( 9 )  i s  similar t o  t h a t  assumed f o r  t h e  pos i t ion  
vector  i n  terms of t h e  c l a s s i c a l  f and g ser ies5 .  
these  se r i e s ,  bu t ,  as s h a l l  be found, f i n i t e  expressions involving 
quan t i t i e s  from t h e  Kepler so lu t ion .  

Here, F and G are not 

Subs t i tu t ing  Eq. (9)  i n t o  Eq. ( 6 ) ,  w e  have a f t e r  manipulation 

Eq. ( 9 )  i s  d i f f e ren t i a t ed  twice with respect  t o  t i m e .  This  y i e lds :  

r p  = (F + VG - % - 4 ) F +  ( 2 i - k  + G)k 
r r 3  r 3  r 3  

By domparing Eqs. (10) and (11) , w e  see  t h a t :  

G = -2F 

, 



3. (Continued) 

From Eq. (12),  we have 

6 = K3 - 2F 

By subs t i tu t ing  Eq. (1 
alone i s  obtained 

i n t o  Eq. (l3), a d i f f e r e n t i a l  equation f o r  F 

'F' + (F - 2 ~ 3 )  = o (15) 
r 

This equation has the  solut ion 

F = KbX + K5Y + 2K3 (16) 

where, again, x and y a re  the  components of  the  Kepler sblut ion and K3, 
K4,  K5 are in tegra t ion  constahhe. 
grat ing Eq. (14 ) .  

The function G i s  obtained by in te -  

G = l ( K 3  - 2F)dt = - I(3K3 + 2K4X+ 2KgY)dt 

I n  order t o  carry out t h i s  integrat ion,  t he  eccentr ic  anomaly of t he  
Keplerian motion i s  used as the  integrat ion var iable  f o r  e l l i p t i c a l  
o rb i t s .  

1 

s i n  u ( l  - e cos u)du 

The integrat ion gives 

where t = time 
a = semi-major axis 
n = mean motion 
E = t o t a l  energy 
L = angular momentum 
P = semi-latus rectum 
e = eccent r ic i ty  
K6 = integrat ion constant 

The G function has exactly the  same I o m  FuL ;,j-&e~kcl5: zrh5.trc: when the 
in tegra t ion  i s  performed by using hyperbolic anomaly as t h e  integrat ion 
var iable .  Similarly,  f o r  parabolic o rb i t s ,  t h e  G function becomes 

G = -3K3t + 3 4  $r2 - P(r + P) ]  + K$P(r + P) + 1(6 (18) 
5 



3. (Continued) 

F ina l ly ,  Y can be obtained from 
- 

.. - - 
Y = -A = -GE + Lz + K3F - ( K l i  + K2?)’l; 

with 
- 
D = -K5 i + K 4  7 

- -  
where i ,  j and are un i t  vectors  of t h e  perigee or iented coordinates. 

4. 

The 

A l l  

APPROXIMATE SOLUTION OF COAST FOR ORBITS WITH ECCENTRICITY VERY CLOSE 
TO UNITY 

e l l i p t i c a l  so lu t ion  as found i n  t h e  previous sec t ion  i s  

( 9 )  

terms are  w e l l  behaved numerically as eccen t r i c i ty  approaches uni ty  
except t h e  term with coef f ic ien t  K 4  i n  the  G-function. 
t he  squared bracket term vanish separa te ly  at  unit eccen t r i c i ty  but  t h e i r  
r a t i o  i s  f i n i t e .  
c i t y  e = 1 - E with E << 1, then t h e  eccent r ic  anomaly u i s  a l so  much 
less than 1 and can be expanded i n  a s e r i e s  of s i n  u ,  which is: 

The energy E and 

To el iminate  t h i s  numerical d i f f i c u l t y ,  l e t  eccentr i -  

1 u = s i n  u + y . 3 s in& + h . 2 , 1. sin5u + .... 
2 4 5  

This s e r i e s  i s  t runcated after t h e  t h i r d  term and subs t i t u t ed  i n t o  
Kepler’s equation: 

(20) 

t = &(u - e s i n  u )  
n 

This y ie lds  



I -  

4. ( Continued) 

Since 

s i n  u 

and 

n = 2 =Fl- 
a 

Kepler's equation becomes 

3 2 - 3 
2 

- 
,2)2 = L E 2 ( 2  -E) 

P2 

t = - [  ' f l  P ( 1 + $ + 2 p  E 1 Y2 + E L  y41 
20 p3 3 L 2  

(22) 

"he second and higher order terms i n  E have been dropped i n  the  last 
expression for  t i m e .  
ti on hereaft e r . These terms w i l l  also be neglected i n  the  deriva- 

Now 

Since 

cos = L (1  - r) = (1 + €)(1 - r) = 1 + E ( l  - 2;) e a a 

with 

thus 

Substi tuting Eq. (23) i n t o  Eq. (22),  yields 



4. (Continued) 

With t h i s  expression f o r  t i m e ,  t he  term with coef f ic ien t  K 4  i n  t h e  
Gfunct ion  i s  

Final ly  we have 

r2 - P ( r  + P) ' [P(r  + P)  + 4r2]} + ' h  

K5p(r + P) + K6 

When E = 0, t h i s  becomes the  parabolic so lu t ion  given by Eq. (18). 

5 .  DISCUSSION 

The s ingular i ty  a t  zero eccen t r i c i ty  tha t  e x i s t s  i n  previous ana ly t i ca l  
coast solut ions does not appear i n  t h e  so lu t ign  presented here.  
form of solut ion taken f o r  t he  project ion of  A onto the  plane of motion 
eliminated t h i s  s ingu la r i ty  and a l so  gave a pa r t i cu la r ly  simple form f o r  
t he  resu l t ing  solut ion.  The absence of t h e  s ingu la r i ty  i s  of  ass i s tance  
f o r  study of op t ina l  t r a j e c t o r i e s  f o r  boost t o  c i r c u l a r  and near c i r -  
cu l a r  o rb i t s .  With t h e  improved accuracy due t o  e l iminat ion of integra-  
t i o n  and round o f f  e r r o r s ,  t he  ana ly t i ca l  so lu t ion  presented i s  a l so  
useful  f o r  optimizing parking o r b i t s .  

The 

The numerical d i f f i c u l t y  f o r  very nearly parabol ic  o r b i t s  can be handled 
by employing the  approximate so lu t ion  presented i n  Section 4. 
i n t e r e s t  t o  note ,  however, t h a t  i n  ac tua l  numerical work ca r r i ed  out ,  
t h e  exact parabolic so lu t ion  gives s a t i s f a c t o r y  results i n t h a t  region. 
The average of t he  s ign i f i can t  f igures  of agreement of t h e  Lagrange 
mul t ip l ie rs  obtained from t h e  ana ly t i ca l  so lu t ion  with t h e  mul t ip l i e r s  
calculated by d i r e c t  numerical in tegra t ion  i s  shown i n  t h e  f igu re  below. 
The comparison was made 100 seconds a f t e r  t h e  beginning of coast .  Coast 
w a s  i n i t i a t e d  1000 seconds a f t e r  perigee.  The values were ca lcu la ted  
carrying eight d i g i t s .  In  the  ranges of e c c e n t r i c i t y  away from uni ty ,  
t h e  difference i n  ana ly t i ca l  and numerical values i s  due t o  error i n  
t h e  numerical in tegra t ion .  In  these  regions,  t h e r e  i s  no numerical 
d i f f i c u l t y  with t h e  ana ly t i ca l  so lu t ion  and it gives  prec ise  values .  
The results i n  t h e  neighborhood of e c c e n t r i c i t y  e = 1 
improved by using t h e  approximate so lu t ion .  

It i s  of 

can be 



I 

0 

cu 



5. ( Continued) 

The ana ly t ica l  coast solut ion can be employed f o r  t h ree  dimensional 
problems as w e l l  as planar  cases.  
t h e  plane of motion at  t h e  start  of coast  and r o t a t e  back out of t h e  
plane t o  the o r ig ina l  reference at the  end of  coast .  The axes used m u s t  
coincide with t h e  perigee or iented axes used i n  developing t h e  coast  
solut ion.  

It i s  only necessary t o  r o t a t e  i n t o  
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